The diagram above represents the process of chimeric antigen receptor T-cell therapy (CAR), this is a method of immunotherapy, which is a growing practice in the treatment of cancer. The final result should be a production of equipped T-cells that can recognize and fight the infected cancer cells in the body.
T-cells (represented by objects labeled as 't') are removed from the patient's blood.
Then in a lab setting the gene that encodes for the specific antigen receptors are incorporated into the T-cells.
Thus producing the CAR receptors (labeled as c) on the surface of the cells.
The newly modified T-cells are then further harvested and grown in the lab.
After a certain time period, the engineered T-cells are infused back into the patient.
Immunotherapy or biological therapy is the treatment of disease by activating or suppressing the immune system. Immunotherapies designed to elicit or amplify an immune response are classified as activation immunotherapies, while immunotherapies that reduce or suppress are classified as suppression immunotherapies. Immunotherapy is under preliminary research for its potential to treat various forms of cancer.[1][2][3][4]
Cell-based immunotherapies are effective for some cancers.[5][6] Immune effector cells such as lymphocytes, macrophages, dendritic cells, natural killer cells, and cytotoxic T lymphocytes work together to defend the body against cancer by targeting abnormal antigens expressed on the surface of tumor cells. Vaccine-induced immunity to COVID-19 relies mostly on an immunomodulatory T-cell response.[7]
^Syn NL, Teng MW, Mok TS, Soo RA (December 2017). "De-novo and acquired resistance to immune checkpoint targeting". The Lancet. Oncology. 18 (12): e731 –e741. doi:10.1016/s1470-2045(17)30607-1. PMID29208439.
^Conforti L (February 2012). "The ion channel network in T lymphocytes, a target for immunotherapy". Clinical Immunology. 142 (2): 105–106. doi:10.1016/j.clim.2011.11.009. PMID22189042.