Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Indium antimonide

Indium antimonide
Ball and stick cell model of indium antimonide
Sample of crystalline indium antimonide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.013.812 Edit this at Wikidata
EC Number
  • 215-192-3
RTECS number
  • NL1105000
UNII
UN number 1549
  • InChI=1S/In.Sb checkY
    Key: WPYVAWXEWQSOGY-UHFFFAOYSA-N checkY
  • [In]#[Sb]
Properties
InSb
Molar mass 236.578 g·mol−1
Appearance Dark grey, metallic crystals
Density 5.7747 g⋅cm−3[1]
Melting point 524 °C (975 °F; 797 K)[1]
Band gap 0.17 eV
Electron mobility 7.7 mC⋅s⋅g−1 (at 27 °C)
Thermal conductivity 180 mW⋅K−1⋅cm−1 (at 27 °C)
4[2]
Structure
Zincblende
T2d-F-43m
a = 0.648 nm
Tetrahedral
Thermochemistry[3]
49.5 J·K−1·mol−1
86.2 J·K−1·mol−1
−30.5 kJ·mol−1
−25.5 kJ·mol−1
Hazards
GHS labelling:
GHS07: Exclamation mark GHS09: Environmental hazard[4]
Warning
H302, H332, H411
P273
Safety data sheet (SDS) External SDS
Related compounds
Other anions
Indium nitride
Indium phosphide
Indium arsenide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Indium antimonide (InSb) is a crystalline compound made from the elements indium (In) and antimony (Sb). It is a narrow-gap semiconductor material from the III-V group used in infrared detectors, including thermal imaging cameras, FLIR systems, infrared homing missile guidance systems, and in infrared astronomy. Indium antimonide detectors are sensitive to infrared wavelengths between 1 and 5 μm.

Indium antimonide was a very common detector in the old, single-detector mechanically scanned thermal imaging systems. Another application is as a terahertz radiation source as it is a strong photo-Dember emitter.

  1. ^ a b Haynes, p. 4.66
  2. ^ Haynes, pp. 12.156
  3. ^ Haynes, pp. 5.22
  4. ^ "Indium Antimonde". American Elements. Retrieved June 20, 2019.

Previous Page Next Page