Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Intermediate polar

Diagram of an intermediate polar. Matter flows from the companion star into an accretion disk around the white dwarf, but is disrupted by the white dwarf's magnetic field.

In astronomy, an intermediate polar (also called a DQ Herculis Star) is a type of cataclysmic variable, binary star system with a white dwarf and a cool main-sequence secondary star. In most cataclysmic variables, matter from the companion star is gravitationally stripped by the compact star and forms an accretion disk around it. In intermediate polar systems, the same general scenario applies except that the inner disk is disrupted by the magnetic field of the white dwarf.

The name "intermediate polar" is derived from the strength of the white dwarf's magnetic field, which is between that of non-magnetic cataclysmic variable systems and strongly magnetic systems. Non-magnetic systems exhibit full accretion disks, while strongly magnetic systems (called polars or AM Herculis systems) exhibit only accretion streams which directly impact the white dwarf's magnetosphere.

There were 26 confirmed intermediate polar systems as of 14 April 2006. This represents about 1% of the 1,830 total cataclysmic variable systems presented by Downes et al. (2006) in the Catalog of Cataclysmic Variables. Only two of them are brighter than 15th magnitude at minimum: the prototype DQ Herculis, and the unusual slow nova, GK Persei.[1]

  1. ^ "Catalog of Cataclysmic Variables". Retrieved 2018-01-17.

Previous Page Next Page