Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Intrinsic dimension

The intrinsic dimension for a data set can be thought of as the number of variables needed in a minimal representation of the data. Similarly, in signal processing of multidimensional signals, the intrinsic dimension of the signal describes how many variables are needed to generate a good approximation of the signal.

When estimating intrinsic dimension, however, a slightly broader definition based on manifold dimension is often used, where a representation in the intrinsic dimension does only need to exist locally. Such intrinsic dimension estimation methods can thus handle data sets with different intrinsic dimensions in different parts of the data set. This is often referred to as local intrinsic dimensionality.

The intrinsic dimension can be used as a lower bound of what dimension it is possible to compress a data set into through dimension reduction, but it can also be used as a measure of the complexity of the data set or signal. For a data set or signal of N variables, its intrinsic dimension M satisfies 0 ≤ M ≤ N, although estimators may yield higher values.


Previous Page Next Page








Responsive image

Responsive image