Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


K-theory

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.[1]

K-theory involves the construction of families of K-functors that map from topological spaces or schemes, or to be even more general: any object of a homotopy category to associated rings; these rings reflect some aspects of the structure of the original spaces or schemes. As with functors to groups in algebraic topology, the reason for this functorial mapping is that it is easier to compute some topological properties from the mapped rings than from the original spaces or schemes. Examples of results gleaned from the K-theory approach include the Grothendieck–Riemann–Roch theorem, Bott periodicity, the Atiyah–Singer index theorem, and the Adams operations.

In high energy physics, K-theory and in particular twisted K-theory have appeared in Type II string theory where it has been conjectured that they classify D-branes, Ramond–Ramond field strengths and also certain spinors on generalized complex manifolds. In condensed matter physics K-theory has been used to classify topological insulators, superconductors and stable Fermi surfaces. For more details, see K-theory (physics).

  1. ^ Atiyah, Michael (2000). "K-Theory Past and Present". arXiv:math/0012213.

Previous Page Next Page






نظرية-كي Arabic Teoria K Catalan K-Theorie German K-teoría Spanish نظریه K FA K-théorie French K理論 Japanese K이론 Korean K-theorie Dutch K-teoria Portuguese

Responsive image

Responsive image