Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


KTHNY theory

In statistical mechanics, the KTHNY-theory describes the process of melting of crystals in two dimensions (2D). The name is derived from the initials of the surnames of John Michael Kosterlitz, David J. Thouless,[1][2] Bertrand Halperin, David R. Nelson,[3][4] and A. Peter Young,[5] who developed the theory in the 1970s. It is, beside the Ising model in 2D and the XY model in 2D,[6][7] one of the few theories, which can be solved analytically and which predicts a phase transition at a temperature .

  1. ^ Kosterlitz, J.M.; Thouless, D.J. (1972). "Long Range Order and Metastability in Two-Dimensional Solids and Superfluids". Journal of Physics C. 5: 124. doi:10.1088/0022-3719/5/11/002.
  2. ^ Kosterlitz, J.M.; Thouless, D.J. (1973). "Ordering Metastability, and Phase Transitions in Two-Dimensional Systems". Journal of Physics C. 6 (1181): 1181–1203. Bibcode:1973JPhC....6.1181K. doi:10.1088/0022-3719/6/7/010.
  3. ^ Halperin, B.I.; Nelson, D.R. (1978). "Theory of Two-Dimensional Melting". Physical Review Letters. 41 (2): 121–124. Bibcode:1978PhRvL..41..121H. doi:10.1103/PhysRevLett.41.121.
  4. ^ Nelson, D.R.; Halperin, B.I. (1979). "Dislocation-mediated melting in two dimensions". Physical Review B. 19 (5): 2457–2484. Bibcode:1979PhRvB..19.2457N. doi:10.1103/PhysRevB.19.2457.
  5. ^ Young, P.A. (1979). "Melting and the vector Coulomb gas in two dimensions". Physical Review B. 19 (4): 1855–1866. Bibcode:1979PhRvB..19.1855Y. doi:10.1103/PhysRevB.19.1855.
  6. ^ Kosterlitz, J.M. (1974). "The critical properties of the two-dimensional XY model". Journal of Physics C. 7 (6): 1046–1060. Bibcode:1974JPhC....7.1046K. doi:10.1088/0022-3719/7/6/005.
  7. ^ Nelson, D.R.; Kosterlitz, J.M. (1977). "Universal Jump in the Superfluid Density of Two-Dimensional Superfluids". Physical Review Letters. 39 (19): 1201–1205. Bibcode:1977PhRvL..39.1201N. doi:10.1103/PhysRevLett.39.1201.

Previous Page Next Page






KTHNY-Theorie German Teoria di KTHNY Italian

Responsive image

Responsive image