Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Kerosene lamp

A kerosene lamp produced by the factory of Karlskrona Lampfabrik in Sweden c. 1890s
Swiss flat-wick kerosene lamp. The knob protruding to the right adjusts the wick, and hence the flame size.

A kerosene lamp (also known as a paraffin lamp in some countries) is a type of lighting device that uses kerosene as a fuel. Kerosene lamps have a wick or mantle as light source, protected by a glass chimney or globe; lamps may be used on a table, or hand-held lanterns may be used for portable lighting. Like oil lamps, they are useful for lighting without electricity, such as in regions without rural electrification, in electrified areas during power outages, at campsites, and on boats. There are three types of kerosene lamp: flat-wick, central-draft (tubular round wick), and mantle lamp. Kerosene lanterns meant for portable use have a flat wick and are made in dead-flame, hot-blast, and cold-blast variants.

Pressurized kerosene lamps use a gas mantle; these are known as Petromax, Tilley lamps, or Coleman lamps, among other manufacturers. They produce more light per unit of fuel than wick-type lamps, but are more complex and expensive in construction and more complex to operate. A hand-pump pressurizes air, which forces liquid fuel from a reservoir into a gas chamber. Vapor from the chamber burns, heating a mantle to incandescence and providing heat.

Kerosene lamps are widely used for lighting in rural areas of Africa and Asia, where electricity is not distributed or is too costly. As of 2005, kerosene and other fuel-based illumination methods consume an estimated 77 billion litres (20 billion US gallons) of fuel per year, equivalent to 8.0 million gigajoules (1.3 million barrels of oil equivalent) per day.[1][2] This is comparable to annual U.S. jet-fuel consumption of 76 billion litres (20 billion US gallons) per year.[3][improper synthesis?]

  1. ^ Jean-Claude Bolay, Alexandre Schmid, Gabriela Tejada Technologies and Innovations for Development: Scientific Cooperation for a Sustainable Future, Springer, 2012 ISBN 2-8178-0267-5 page 308.
  2. ^ Mills, E. (May 27, 2005). "ENVIRONMENT: The Specter of Fuel-Based Lighting". Science. 308 (5726): 1263–1264. doi:10.1126/science.1113090. ISSN 0036-8075. PMID 15919979. S2CID 129749450.
  3. ^ "Jet fuel consumption by country, around the world". TheGlobalEconomy.com. Retrieved June 26, 2021.

Previous Page Next Page