Explaining the latitudinal diversity gradient has been called one of the great contemporary challenges of biogeography and macroecology (Willig et al. 2003, Pimm and Brown 2004, Cardillo et al. 2005).[5] The question "What determines patterns of species diversity?" was among the 25 key research themes for the future identified in 125th Anniversary issue of Science (July 2005). There is a lack of consensus among ecologists about the mechanisms underlying the pattern, and many hypotheses have been proposed and debated. A recent review [6] noted that among the many conundrums associated with the latitudinal diversity gradient (or latitudinal biodiversity gradient) the causal relationship between rates of molecular evolution and speciation has yet to be demonstrated.
Understanding the global distribution of biodiversity is one of the most significant objectives for ecologists and biogeographers. Beyond purely scientific goals and satisfying curiosity, this understanding is essential for applied issues of major concern to humankind, such as the spread of invasive species, the control of diseases and their vectors, and the likely effects of global climate change on the maintenance of biodiversity (Gaston 2000). Tropical areas play prominent roles in the understanding of the distribution of biodiversity, as their rates of habitat degradation and biodiversity loss are exceptionally high.[7]