Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Law of excluded middle

In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true.[1][2] It is one of the three laws of thought, along with the law of noncontradiction, and the law of identity; however, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens or De Morgan's laws. The law is also known as the law / principle of the excluded third, in Latin principium tertii exclusi. Another Latin designation for this law is tertium non datur or "no third [possibility] is given". In classical logic, the law is a tautology.

In contemporary logic the principle is distinguished from the semantical principle of bivalence, which states that every proposition is either true or false. The principle of bivalence always implies the law of excluded middle, while the converse is not always true. A commonly cited counterexample uses statements unprovable now, but provable in the future to show that the law of excluded middle may apply when the principle of bivalence fails.[3]

  1. ^ "Laws of thought". Encyclopedia Britannica. Retrieved 20 March 2021.
  2. ^ "Realism – Metaphysical realism and objective truth". Encyclopedia Britannica. Retrieved 20 March 2021.
  3. ^ Tomassi, Paul (1999). Logic. Routledge. p. 124. ISBN 978-0-415-16696-6.

Previous Page Next Page