Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Lithium oxide

Lithium oxide

__ Li+     __ O2−
Names
IUPAC name
Lithium oxide
Other names
Lithia
Kickerite
Dilithium Monoxide
Dilithium Oxide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.823 Edit this at Wikidata
RTECS number
  • OJ6360000
UNII
  • InChI=1S/2Li.O/q2*+1;-2 checkY
    Key: FUJCRWPEOMXPAD-UHFFFAOYSA-N checkY
  • InChI=1S/2Li.O/q2*+1;-2
    Key: FUJCRWPEOMXPAD-UHFFFAOYAW
  • Key: FUJCRWPEOMXPAD-UHFFFAOYSA-N
  • [Li+].[Li+].[O-2]
Properties
Li
2
O
Molar mass 29.88 g/mol
Appearance white solid
Density 2.013 g/cm3
Melting point 1,438 °C (2,620 °F; 1,711 K)
Boiling point 2,600 °C (4,710 °F; 2,870 K)
Reacts to form LiOH
log P 9.23
1.644 [1]
Structure
Antifluorite (cubic), cF12
Fm3m, No. 225
Tetrahedral (Li+); cubic (O2−)
Thermochemistry
1.8105 J/g K or 54.1 J/mol K
37.89 J/mol K
-20.01 kJ/g or -595.8 kJ/mol
-562.1 kJ/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Corrosive, reacts violently with water
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g. calciumSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g. sodium, sulfuric acid
3
0
1
Flash point Non-flammable
Related compounds
Other anions
Lithium sulfide
Lithium selenide
Lithium telluride
Lithium polonide
Other cations
Sodium oxide
Potassium oxide
Rubidium oxide
Caesium oxide
Related lithium oxides
Lithium peroxide
Lithium superoxide
Related compounds
Lithium hydroxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Lithium oxide (Li
2
O) or lithia is an inorganic chemical compound. It is a white solid. Although not specifically important, many materials are assessed on the basis of their Li2O content. For example, the Li2O content of the principal lithium mineral spodumene (LiAlSi2O6) is 8.03%.[2]

  1. ^ Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN 0-07-049439-8
  2. ^ Cite error: The named reference Ullmann was invoked but never defined (see the help page).

Previous Page Next Page