The marine macrobenthos community is a critical component and reliable indicator of the biotic integrity of marine ecosystems, especially the intertidal ecosystems.[4][5][6] On the one hand, macrobenthos plays a vital role in maintaining ecosystem functions, such as material cycling in sediments and energy flow in food webs. On the other hand, macrobenthos is relatively sedentary and therefore reflects the ambient conditions of sediments, in which many pollutants (e.g., heavy metals and organic enrichment) are ultimately partitioned.[7][8][9]
Heavy metal pollution is one of the most common anthropogenic pressures that impact marine ecosystems (e.g., intertidal zones, coastal waters, and estuaries), which has been documented by many studies throughout the world.[10][11][12] Heavy metal contaminants can result in adverse toxic effects on benthic organisms,[13][14] leading to the changes in composition, structure, and ecosystem function of macrobenthic communities.[15][5][16][17][18] For example, in Aveiro Lagoon (Portugal), with the increase of mercury contamination, the total abundance and species richness decreased, and tolerant taxa increased;[19] in Incheon Harbour (Korea) and the coastal zone south of Sfax (Tunisia), macrobenthic community gradually changed with the pollution levels, and species diversity decreased with decreased distance from the pollution source.[7][20] However, most of the studies were conducted in the subtidal zones other than intertidal zones, which are more vulnerable to human activities.[9]
Macrobenthos consists of numerous taxa, and different species have a different tolerance to environmental pressures. For example, polychaetesCapitella capitata and Heteromastus filiformis are naturally tolerant to environmental disturbance, which could live well in a highly organic enrichment and/or heavy metal polluted area,[21][7][22] while some taxa (e.g., polychaete Magelona dakini and amphipodsPerioculodes longimanus) are inherently sensitive to environmental disturbance, and could not survive in such highly polluted zones.[23][24][9]
This indicates that each species has evolved a unique survival strategy to adapt to different environmental conditions, even though it may be similar in some ways with other species. When facing loads of contaminants, such as metal(loid)s and organic enrichment or other contaminants gradients, macrobenthos have to make some reactions to resist such adverse environmental conditions. Therefore, macrobenthic responses may reflect different types and levels of pollutant impacts.[7][5][9]
A visual examination of macroorganisms at the bottom of an aquatic ecosystem can be a good indicator of water quality.[25]
^Teixeira, Heliana; Neto, João Magalhães; Patrício, Joana; Veríssimo, Helena; Pinto, Rute; Salas, Fuensanta; Marques, João Carlos (2009). "Quality assessment of benthic macroinvertebrates under the scope of WFD using BAT, the Benthic Assessment Tool". Marine Pollution Bulletin. 58 (10): 1477–1486. Bibcode:2009MarPB..58.1477T. doi:10.1016/j.marpolbul.2009.06.006. PMID19615698.
^ abcPiló, D.; Ben-Hamadou, R.; Pereira, F.; Carriço, A.; Pereira, P.; Corzo, A.; Gaspar, M.B.; Carvalho, S. (2016). "How functional traits of estuarine macrobenthic assemblages respond to metal contamination?". Ecological Indicators. 71: 645–659. Bibcode:2016EcInd..71..645P. doi:10.1016/j.ecolind.2016.07.019. S2CID89021490.
^Llanos, Elizabeth Noemi; Saracho Bottero, María Andrea; Jaubet, María Lourdes; Elías, Rodolfo; Garaffo, Griselda Valeria (2020). "Functional diversity in the intertidal macrobenthic community at sewage-affected shores from Southwestern Atlantic". Marine Pollution Bulletin. 157: 111365. Bibcode:2020MarPB.15711365L. doi:10.1016/j.marpolbul.2020.111365. PMID32658710. S2CID220518580.
^ abcdRyu, Jongseong; Khim, Jong Seong; Kang, Seong-Gil; Kang, Daeseok; Lee, Chang-hee; Koh, Chul-Hwan (2011). "The impact of heavy metal pollution gradients in sediments on benthic macrofauna at population and community levels". Environmental Pollution. 159 (10): 2622–2629. Bibcode:2011EPoll.159.2622R. doi:10.1016/j.envpol.2011.05.034. PMID21684642.
^Desrosiers, Mélanie; Usseglio-Polatera, Philippe; Archaimbault, Virginie; Larras, Floriane; Méthot, Ginette; Pinel-Alloul, Bernadette (2019). "Assessing anthropogenic pressure in the St. Lawrence River using traits of benthic macroinvertebrates". Science of the Total Environment. 649: 233–246. Bibcode:2019ScTEn.649..233D. doi:10.1016/j.scitotenv.2018.08.267. PMID30173032. S2CID52167429.
^Boudaya, Lobna; Mosbahi, Nawfel; Dauvin, Jean-Claude; Neifar, Lassad (2019). "Structure of the benthic macrofauna of an anthropogenic influenced area: Skhira Bay (Gulf of Gabès, central Mediterranean Sea)". Environmental Science and Pollution Research. 26 (13): 13522–13538. Bibcode:2019ESPR...2613522B. doi:10.1007/s11356-019-04809-8. PMID30911967. S2CID85517094.
^Wang, Xuejing; Fu, Renlong; Li, Hailong; Zhang, Yan; Lu, Meiqing; Xiao, Kai; Zhang, Xiaolang; Zheng, Chunmiao; Xiong, Ying (2020). "Heavy metal contamination in surface sediments: A comprehensive, large-scale evaluation for the Bohai Sea, China". Environmental Pollution. 260: 113986. Bibcode:2020EPoll.26013986W. doi:10.1016/j.envpol.2020.113986. PMID31995779. S2CID210947470.
^Dewitt, Theodore H.; Swartz, Richard C.; Hansen, David J.; McGovern, Douglas; Berry, Walter J. (1996). "Bioavailability and chronic toxicity of cadmium in sediment to the estuarine amphipod Leptocheirus plumulosus". Environmental Toxicology and Chemistry. 15 (12): 2095–2101. doi:10.1002/etc.5620151205.
^Mucha, Ana P.; Vasconcelos, M.Teresa S.D; Bordalo, Adriano A. (2003). "Macrobenthic community in the Douro estuary: Relations with trace metals and natural sediment characteristics". Environmental Pollution. 121 (2): 169–180. doi:10.1016/S0269-7491(02)00229-4. PMID12521105.
^Roe, Rebecca A. L.; Tran, Thi Kim Anh; Schreider, Maria J.; MacFarlane, Geoff R. (2020). "Assessment of the Effects of Sediment-Associated Metals and Metalloids on Mangrove Macroinvertebrate Assemblages". Water, Air, & Soil Pollution. 231 (7): 352. Bibcode:2020WASP..231..352R. doi:10.1007/s11270-020-04731-7. S2CID220309439.
^Nunes, M.; Coelho, J.P.; Cardoso, P.G.; Pereira, M.E.; Duarte, A.C.; Pardal, M.A. (2008). "The macrobenthic community along a mercury contamination in a temperate estuarine system (Ria de Aveiro, Portugal)". Science of the Total Environment. 405 (1–3): 186–194. Bibcode:2008ScTEn.405..186N. doi:10.1016/j.scitotenv.2008.07.009. PMID18765161.
^Mosbahi, Nawfel; Serbaji, Mohamed Moncef; Pezy, Jean-Philippe; Neifar, Lassad; Dauvin, Jean-Claude (2019). "Response of benthic macrofauna to multiple anthropogenic pressures in the shallow coastal zone south of Sfax (Tunisia, central Mediterranean Sea)". Environmental Pollution. 253: 474–487. Bibcode:2019EPoll.253..474M. doi:10.1016/j.envpol.2019.06.080. PMID31330340. S2CID198170686.
^Selck, Henriette; Decho, Alan W.; Forbes, Valery E. (1999). "Effects of chronic metal exposure and sediment organic matter on digestive absorption efficiency of cadmium by the deposit-feeding polychaete Capitellaspecies I". Environmental Toxicology and Chemistry. 18 (6): 1289–1297. doi:10.1002/etc.5620180631. S2CID247666449.
^Bae, Hanna; Lee, Jung-Ho; Song, Sung Joon; Park, Jinsoon; Kwon, Bong-Oh; Hong, Seongjin; Ryu, Jongseong; Choi, Kyungsik; Khim, Jong Seong (2017). "Impacts of environmental and anthropogenic stresses on macrozoobenthic communities in Jinhae Bay, Korea". Chemosphere. 171: 681–691. Bibcode:2017Chmsp.171..681B. doi:10.1016/j.chemosphere.2016.12.112. PMID28061426.
^De-La-Ossa-Carretero, J.A.; Del-Pilar-Ruso, Y.; Giménez-Casalduero, F.; Sánchez-Lizaso, J.L.; Dauvin, J.-C. (2012). "Sensitivity of amphipods to sewage pollution". Estuarine, Coastal and Shelf Science. 96: 129–138. Bibcode:2012ECSS...96..129D. doi:10.1016/j.ecss.2011.10.020.