Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Mechanical energy

An example of a mechanical system: A satellite is orbiting the Earth influenced only by the conservative gravitational force; its mechanical energy is therefore conserved. The satellite's acceleration is represented by the green vector and its velocity is represented by the red vector. If the satellite's orbit is an ellipse the potential energy of the satellite, and its kinetic energy, both vary with time but their sum remains constant.

In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces, then the mechanical energy is constant. If an object moves in the opposite direction of a conservative net force, the potential energy will increase; and if the speed (not the velocity) of the object changes, the kinetic energy of the object also changes. In all real systems, however, nonconservative forces, such as frictional forces, will be present, but if they are of negligible magnitude, the mechanical energy changes little and its conservation is a useful approximation. In elastic collisions, the kinetic energy is conserved, but in inelastic collisions some mechanical energy may be converted into thermal energy. The equivalence between lost mechanical energy and an increase in temperature was discovered by James Prescott Joule.

Many devices are used to convert mechanical energy to or from other forms of energy, e.g. an electric motor converts electrical energy to mechanical energy, an electric generator converts mechanical energy into electrical energy and a heat engine converts heat to mechanical energy.


Previous Page Next Page