Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Metallurgical failure analysis

Metallurgical failure analysis is the process to determine the mechanism that has caused a metal component to fail. It can identify the cause of failure, providing insight into the root cause and potential solutions to prevent similar failures in the future, as well as culpability, which is important in legal cases.[1] Resolving the source of metallurgical failures can be of financial interest to companies. The annual cost of corrosion (a common cause of metallurgical failures) in the United States was estimated by NACE International in 2012 to be $450 billion a year, a 67% increase compared to estimates for 2001.[1] These failures can be analyzed to determine their root cause, which if corrected, would save reduce the cost of failures to companies.

Failure can be broadly divided into functional failure and expected performance failure. Functional failure occurs when a component or process fails and its entire parent system stops functioning entirely. This category includes the common idea of a component fracturing rapidly. Expected performance failures are when a component causes the system to perform below a certain performance criterion, such as life expectancy, operating limits, or shape and color. Some performance criteria are documented by the supplier, such as maximum load allowed on a tractor, while others are implied or expected by the customer, such gas consumption (miles per gallon for automobiles).[1]

Often a combination of both environmental conditions and stress will cause failure. Metal components are designed to withstand the environment and stresses that they will be subjected to. The design of a metal component involves not only a specific elemental composition but also specific manufacturing process such as heat treatments, machining processes, etc. The huge arrays of different metals that result all have unique physical properties. Specific properties are designed into metal components to make them more robust to various environmental conditions. These differences in physical properties will exhibit unique failure modes. A metallurgical failure analysis takes into account as much of this information as possible during analysis. The ultimate goal of failure analysis is to provide a determination of the root cause and a solution to any underlying problems to prevent future failures.[2]

  1. ^ a b c Dennies, Daniel P. (2021-01-15). "How to Organize and Run a Failure Investigation". Failure Analysis and Prevention (PDF). pp. 36–51. doi:10.31399/asm.hb.v11.a0006755. ISBN 978-1-62708-295-2. S2CID 241618812.
  2. ^ http://www.g2mtlabs.com/failure-analysis/what-is-failure-analysis/ G2MT Labs - "What is Failure Analysis?"

Previous Page Next Page






تحليل انهيار فلزي Arabic

Responsive image

Responsive image