Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Minimax theorem

In the mathematical area of game theory and of convex optimization, a minimax theorem is a theorem that claims that

under certain conditions on the sets and and on the function .[1] It is always true that the left-hand side is at most the right-hand side (max–min inequality) but equality only holds under certain conditions identified by minimax theorems. The first theorem in this sense is von Neumann's minimax theorem about two-player zero-sum games published in 1928,[2] which is considered the starting point of game theory. Von Neumann is quoted as saying "As far as I can see, there could be no theory of games ... without that theorem ... I thought there was nothing worth publishing until the Minimax Theorem was proved".[3] Since then, several generalizations and alternative versions of von Neumann's original theorem have appeared in the literature.[4][5]

  1. ^ Simons, Stephen (1995), Du, Ding-Zhu; Pardalos, Panos M. (eds.), "Minimax Theorems and Their Proofs", Minimax and Applications, Nonconvex Optimization and Its Applications, vol. 4, Boston, MA: Springer US, pp. 1–23, doi:10.1007/978-1-4613-3557-3_1, ISBN 978-1-4613-3557-3, retrieved 2024-10-27
  2. ^ Von Neumann, J. (1928). "Zur Theorie der Gesellschaftsspiele". Math. Ann. 100: 295–320. doi:10.1007/BF01448847. S2CID 122961988.
  3. ^ John L Casti (1996). Five golden rules: great theories of 20th-century mathematics – and why they matter. New York: Wiley-Interscience. p. 19. ISBN 978-0-471-00261-1.
  4. ^ Du, Ding-Zhu; Pardalos, Panos M., eds. (1995). Minimax and Applications. Boston, MA: Springer US. ISBN 9781461335573.
  5. ^ Brandt, Felix; Brill, Markus; Suksompong, Warut (2016). "An ordinal minimax theorem". Games and Economic Behavior. 95: 107–112. arXiv:1412.4198. doi:10.1016/j.geb.2015.12.010. S2CID 360407.

Previous Page Next Page