It has been suggested that this article be merged with Multitask optimization. (Discuss) Proposed since August 2024. |
Multi-task learning (MTL) is a subfield of machine learning in which multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks. This can result in improved learning efficiency and prediction accuracy for the task-specific models, when compared to training the models separately.[1][2][3] Inherently, Multi-task learning is a multi-objective optimization problem having trade-offs between different tasks.[4] Early versions of MTL were called "hints".[5][6]
In a widely cited 1997 paper, Rich Caruana gave the following characterization:
Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task can help other tasks be learned better.[3]
In the classification context, MTL aims to improve the performance of multiple classification tasks by learning them jointly. One example is a spam-filter, which can be treated as distinct but related classification tasks across different users. To make this more concrete, consider that different people have different distributions of features which distinguish spam emails from legitimate ones, for example an English speaker may find that all emails in Russian are spam, not so for Russian speakers. Yet there is a definite commonality in this classification task across users, for example one common feature might be text related to money transfer. Solving each user's spam classification problem jointly via MTL can let the solutions inform each other and improve performance.[citation needed] Further examples of settings for MTL include multiclass classification and multi-label classification.[7]
Multi-task learning works because regularization induced by requiring an algorithm to perform well on a related task can be superior to regularization that prevents overfitting by penalizing all complexity uniformly. One situation where MTL may be particularly helpful is if the tasks share significant commonalities and are generally slightly under sampled.[8] However, as discussed below, MTL has also been shown to be beneficial for learning unrelated tasks.[8][9]
:bmdl
was invoked but never defined (see the help page).