Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Nth root

In mathematics, an nth root of a number x is a number r (the root) which, when raised to the power of the positive integer n, yields x:

The integer n is called the index or degree, and the number x of which the root is taken is the radicand. A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an nth root is a root extraction.

For example, 3 is a square root of 9, since 32 = 9, and −3 is also a square root of 9, since (−3)2 = 9.

The nth root of x is written as using the radical symbol . The square root is usually written without the n as just . Taking the nth root of a number is the inverse operation of exponentiation,[1] and can be written as a fractional exponent:

For a positive real number x, denotes the positive square root of x and denotes the positive real nth root. A negative real number x has no real-valued square roots, but when x is treated as a complex number it has two imaginary square roots, and , where i is the imaginary unit.

In general, any non-zero complex number has n distinct complex-valued nth roots, equally distributed around a complex circle of constant absolute value. (The nth root of 0 is zero with multiplicity n, and this circle degenerates to a point.) Extracting the nth roots of a complex number x can thus be taken to be a multivalued function. By convention the principal value of this function, called the principal root and denoted , is taken to be the nth root with the greatest real part and in the special case when x is a negative real number, the one with a positive imaginary part. The principal root of a positive real number is thus also a positive real number. As a function, the principal root is continuous in the whole complex plane, except along the negative real axis.

An unresolved root, especially one using the radical symbol, is sometimes referred to as a surd[2] or a radical.[3] Any expression containing a radical, whether it is a square root, a cube root, or a higher root, is called a radical expression, and if it contains no transcendental functions or transcendental numbers it is called an algebraic expression.

Roots are used for determining the radius of convergence of a power series with the root test. The nth roots of 1 are called roots of unity and play a fundamental role in various areas of mathematics, such as number theory, theory of equations, and Fourier transform.

  1. ^ "Lesson Explainer: nth Roots: Integers". Retrieved 22 July 2023.
  2. ^ Bansal, R.K. (2006). New Approach to CBSE Mathematics IX. Laxmi Publications. p. 25. ISBN 978-81-318-0013-3.
  3. ^ Silver, Howard A. (1986). Algebra and trigonometry. Englewood Cliffs, New Jersey: Prentice-Hall. ISBN 978-0-13-021270-2.

Previous Page Next Page