Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Obduction

Obduction is a geological process whereby denser oceanic crust (and even upper mantle) is scraped off a descending ocean plate at a convergent plate boundary and thrust on top of an adjacent plate.[1][2] When oceanic and continental plates converge, normally the denser oceanic crust sinks under the continental crust in the process of subduction.[3] Obduction, which is less common, normally occurs in plate collisions at orogenic belts (some of the material from the subducting oceanic plate is emplaced onto the continental plate)[4] or back-arc basins (regions where the edge of a continent is pulled away from the rest of the continent due to the stress of plate collision).[5]

Obduction of oceanic lithosphere produces a characteristic set of rock types called an ophiolite. This assemblage consists of deep-marine sedimentary rock (chert, limestone, clastic sediments), volcanic rocks (pillow lavas, volcanic glass, volcanic ash, sheeted dykes and gabbros) and peridotite (mantle rock).[6] John McPhee describes ophiolite formation by obduction as "where ocean crust slides into a trench and goes under a continent, [and] a part of the crust—i.e., an ophiolite—is shaved off the top and ends up on the lip of the continent."[7]

Obduction can occur where a fragment of continental crust is caught in a subduction zone with resulting overthrusting of oceanic mafic and ultramafic rocks from the mantle onto the continental crust. Obduction often occurs where a small tectonic plate is caught between two larger plates, with the crust (both island arc and oceanic) welding onto an adjacent continent as a new terrane. When two continental plates collide, obduction of the oceanic crust between them is often a part of the resulting orogeny.[citation needed]

  1. ^ "Obduction".
  2. ^ "Plate Tectonics > Glossary > M – R".
  3. ^ Edwards, Sarah J.; Schellart, Wouter P.; Duarte, Joao C. (2015). "Geodynamic models of continental subduction and obduction of overriding plate forearc oceanic lithosphere on top of continental crust". Tectonics. 34 (7): 1494–1515. Bibcode:2015Tecto..34.1494E. doi:10.1002/2015TC003884. S2CID 129467525. Archived from the original on 2021-09-28. Retrieved 2021-09-28.
  4. ^ Dewey, J. F., 1975. The role of ophiolite obduction in the evolution of the Appalachian/Caledonian orogenic belt. In: N. Bogdanov (editor), Ophiolites in the Earth’s Crust. Acad. Sci. U.S.S.R. (in press)
  5. ^ Scliffke, Nicholas; van Hunen, Jeroen; Gueydan, Frédéric; Magni, Valentina; Allen, Mark B. (2021-08-12). "Curved orogenic belts, back-arc basins, and obduction as consequences of collision at irregular continental margins". Geology. 49 (12): 1436–1440. Bibcode:2021Geo....49.1436S. doi:10.1130/G48919.1. S2CID 238718200.
  6. ^ Robinson, Paul T.; Malpas, John; Dilek, Yildirim; Zhou, Mei-fu (2008). "The significance of sheeted dike complexes in ophiolites" (PDF). GSA Today. 18 (11): 4–10. Bibcode:2008GSAT...18k...4R. doi:10.1130/GSATG22A.1.
  7. ^ McPhee, John (1998). Annals of the Former World. New York: Farmer, Strauss, and Giroux. p. 505.

Previous Page Next Page






Obduksiya AZ Obducció Catalan Obduktion (Geologie) German Obduktsioon ET Obdukzio EU Obduction French Obduksi ID Obduzione Italian Obduksiyon KU Obdukcija LT

Responsive image

Responsive image