Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Ostrowski's theorem

In number theory, Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers is equivalent to either the usual real absolute value or a p-adic absolute value.[1]

  1. ^ Koblitz, Neal (1984). P-adic numbers, p-adic analysis, and zeta-functions. Graduate Texts in Mathematics (2nd ed.). New York: Springer-Verlag. p. 3. ISBN 978-0-387-96017-3. Retrieved 24 August 2012. Theorem 1 (Ostrowski). Every nontrivial norm ‖ ‖ on is equivalent to | |p for some prime p or for p = ∞.

Previous Page Next Page