Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Peripheral tolerance

In immunology, peripheral tolerance is the second branch of immunological tolerance, after central tolerance. It takes place in the immune periphery (after T and B cells egress from primary lymphoid organs). Its main purpose is to ensure that self-reactive T and B cells which escaped central tolerance do not cause autoimmune disease.[1] Peripheral tolerance can also serve a purpose in preventing an immune response to harmless food antigens and allergens.[2]

Self reactive cells are subject to clonal deletion or clonal diversion. Both processes of peripheral tolerance control the presence and production of self reactive immune cells.[3] Deletion of self-reactive T cells in the thymus is only 60-70% efficient, and naive T cell repertoire contains a significant portion of low-avidity self-reactive T cells. These cells can trigger an autoimmune response, and there are several mechanisms of peripheral tolerance to prevent their activation.[4] Antigen-specific mechanisms of peripheral tolerance include persistent of T cell in quiescence, ignorance of antigen and direct inactivation of effector T cells by either clonal deletion, conversion to regulatory T cells (Tregs) or induction of anergy.[5][4] Tregs, which are also generated during thymic T cell development, further suppress the effector functions of conventional lymphocytes in the periphery.[6] Dendritic cells (DCs) participate in the negative selection of autoreactive T cells in the thymus, but they also mediate peripheral immune tolerance through several mechanisms.[7]

Dependence of a particular antigen on either central or peripheral tolerance is determined by its abundance in the organism.[8] B Cells have a lower probability that they will express cell surface markers to pose the threat of causing an autoimmune attack.[9] Peripheral tolerance of B cells is largely mediated by B cell dependence on T cell help. However, B cell peripheral tolerance is much less studied.

  1. ^ Janeway, Charles (2001-01-01). Immunobiology Five. Garland Pub. ISBN 9780815336426.
  2. ^ Soyer, O. U.; Akdis, M.; Ring, J.; Behrendt, H.; Crameri, R.; Lauener, R.; Akdis, C. A. (2013). "Mechanisms of peripheral tolerance to allergens". Allergy. 68 (2): 161–170. doi:10.1111/all.12085. ISSN 1398-9995. PMID 23253293. S2CID 24008758.
  3. ^ Xing, Yan; Hogquist, Kristin A. (June 2012). "T-Cell Tolerance: Central and Peripheral". Cold Spring Harbor Perspectives in Biology. 4 (6): a006957. doi:10.1101/cshperspect.a006957. ISSN 1943-0264. PMC 3367546. PMID 22661634.
  4. ^ a b Cite error: The named reference :3 was invoked but never defined (see the help page).
  5. ^ Mueller, Daniel L (2010). "Mechanisms maintaining peripheral tolerance". Nature Immunology. 11 (1): 21–27. doi:10.1038/ni.1817. PMID 20016506. S2CID 9612138.
  6. ^ Cretney, Erika; Kallies, Axel; Nutt, Stephen L. (2013). "Differentiation and function of Foxp3+ effector regulatory T cells". Trends in Immunology. 34 (2): 74–80. doi:10.1016/j.it.2012.11.002. PMID 23219401.
  7. ^ Hasegawa, Hitoshi; Matsumoto, Takuya (2018). "Mechanisms of Tolerance Induction by Dendritic Cells In Vivo". Frontiers in Immunology. 9: 350. doi:10.3389/fimmu.2018.00350. ISSN 1664-3224. PMC 5834484. PMID 29535726.
  8. ^ Malhotra, Deepali; Linehan, Jonathan L; Dileepan, Thamotharampillai; Lee, You Jeong; Purtha, Whitney E; Lu, Jennifer V; Nelson, Ryan W; Fife, Brian T; Orr, Harry T; Anderson, Mark S; Hogquist, Kristin A; Jenkins, Marc K (2016). "Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns". Nature Immunology. 17 (2): 187–195. doi:10.1038/ni.3327. PMC 4718891. PMID 26726812.
  9. ^ Getahun, Andrew (May 2022). "The role of inhibitory signaling in peripheral B cell tolerance". Immunological Reviews. 307 (1): 27–42. doi:10.1111/imr.13070. ISSN 0105-2896. PMC 8986582. PMID 35128676.

Previous Page Next Page