Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Peter Gustav Lejeune Dirichlet

Peter Gustav Lejeune Dirichlet
Born
Johann Peter Gustav Lejeune Dirichlet

(1805-02-13)13 February 1805
Düren, French Empire
Died5 May 1859(1859-05-05) (aged 54)
Göttingen, Kingdom of Hanover
NationalityGerman
Known forSee full list
AwardsPhD (Hon):
University of Bonn (1827)
Pour le Mérite (1855)
Scientific career
FieldsMathematician
InstitutionsUniversity of Breslau
University of Berlin
University of Göttingen
Thesis Partial Results on Fermat's Last Theorem, Exponent 5  (1827)
Academic advisorsSiméon Poisson
Joseph Fourier
Carl Gauss
Doctoral studentsGotthold Eisenstein
Leopold Kronecker
Rudolf Lipschitz
Carl Wilhelm Borchardt
Other notable studentsMoritz Cantor
Elwin Bruno Christoffel
Richard Dedekind
Alfred Enneper
Eduard Heine
Bernhard Riemann
Ludwig Schläfli
Ludwig von Seidel
Wilhelm Weber
Julius Weingarten

Johann Peter Gustav Lejeune Dirichlet (/ˌdɪərɪˈkl/;[1] German: [ləˈʒœn diʁiˈkleː];[2] 13 February 1805 – 5 May 1859) was a German mathematician. In number theory, he proved special cases of Fermat's last theorem and created analytic number theory. In analysis, he advanced the theory of Fourier series and was one of the first to give the modern formal definition of a function. In mathematical physics, he studied potential theory, boundary-value problems, and heat diffusion, and hydrodynamics.

Although his surname is Lejeune Dirichlet, he is commonly referred to by his mononym Dirichlet, in particular for results named after him.

  1. ^ "Dirichlet". Random House Webster's Unabridged Dictionary.
  2. ^ Dudenredaktion (2015). Duden – Das Aussprachewörterbuch: Betonung und Aussprache von über 132.000 Wörtern und Namen [Duden – The Pronouncing Dictionary: accent and pronunciation of more than 132.000 words and names]. Duden - Deutsche Sprache in 12 Bänden (in German). Vol. 6. 312. ISBN 978-3-411-91151-6.

Previous Page Next Page