In mathematics, the quantum dilogarithm is a special function defined by the formula
![{\displaystyle \phi (x)\equiv (x;q)_{\infty }=\prod _{n=0}^{\infty }(1-xq^{n}),\quad |q|<1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d893748651944feca2875e882eb735c39f1c52e2)
It is the same as the q-exponential function
.
Let
be "q-commuting variables", that is elements of a suitable noncommutative algebra satisfying Weyl's relation
. Then, the quantum dilogarithm satisfies Schützenberger's identity
![{\displaystyle \phi (u)\phi (v)=\phi (u+v),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/66eb482443344165216dbcf2c9e57b388d5a577d)
Faddeev-Volkov's identity
![{\displaystyle \phi (v)\phi (u)=\phi (u+v-vu),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8a315868bb4bfba3b33e3182203b22d669dd84c5)
and Faddeev-Kashaev's identity
![{\displaystyle \phi (v)\phi (u)=\phi (u)\phi (-vu)\phi (v).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/86f24b06616b97c79b8797aa82382f73b49b1a40)
The latter is known to be a quantum generalization of Rogers' five term dilogarithm identity.
Faddeev's quantum dilogarithm
is defined by the following formula:
![{\displaystyle \Phi _{b}(z)=\exp \left({\frac {1}{4}}\int _{C}{\frac {e^{-2izw}}{\sinh(wb)\sinh(w/b)}}{\frac {dw}{w}}\right),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ebad7bb3d28a8a32ed55baf1480e9847be65f635)
where the contour of integration
goes along the real axis outside a small neighborhood of the origin and deviates into the upper half-plane near the origin. The same function can be described by the integral formula of Woronowicz:
![{\displaystyle \Phi _{b}(x)=\exp \left({\frac {i}{2\pi }}\int _{\mathbb {R} }{\frac {\log(1+e^{tb^{2}+2\pi bx})}{1+e^{t}}}\,dt\right).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5e41bb819792e76307e28bc3f74c500e8490f1b1)
Ludvig Faddeev discovered the quantum pentagon identity:
![{\displaystyle \Phi _{b}({\hat {p}})\Phi _{b}({\hat {q}})=\Phi _{b}({\hat {q}})\Phi _{b}({\hat {p}}+{\hat {q}})\Phi _{b}({\hat {p}}),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a60a780d67d2cc0f9cfb15ffc5b2bf07882f00ad)
where
and
are self-adjoint (normalized) quantum mechanical momentum and position operators satisfying Heisenberg's commutation relation
![{\displaystyle [{\hat {p}},{\hat {q}}]={\frac {1}{2\pi i}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e71e24a7c98978b62e4b3e1bd607a4b96993c8f5)
and the inversion relation
![{\displaystyle \Phi _{b}(x)\Phi _{b}(-x)=\Phi _{b}(0)^{2}e^{\pi ix^{2}},\quad \Phi _{b}(0)=e^{{\frac {\pi i}{24}}\left(b^{2}+b^{-2}\right)}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/46c5186c88aa6441ce7eaca1df4b501c56236a95)
The quantum dilogarithm finds applications in mathematical physics, quantum topology, cluster algebra theory.
The precise relationship between the q-exponential and
is expressed by the equality
![{\displaystyle \Phi _{b}(z)={\frac {E_{e^{2\pi ib^{2}}}(-e^{\pi ib^{2}+2\pi zb})}{E_{e^{-2\pi i/b^{2}}}(-e^{-\pi i/b^{2}+2\pi z/b})}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4b697f5c7f1ecfbe688c85eae9138ab4f8302159)
valid for
.