In theoretical physics, quantum nonlocality refers to the phenomenon by which the measurement statistics of a multipartite quantum system do not allow an interpretation with local realism. Quantum nonlocality has been experimentally verified under a variety of physical assumptions.[1][2][3][4][5]
Quantum nonlocality does not allow for faster-than-light communication,[6] and hence is compatible with special relativity and its universal speed limit of objects. Thus, quantum theory is local in the strict sense defined by special relativity and, as such, the term "quantum nonlocality" is sometimes considered a misnomer.[7] Still, it prompts many of the foundational discussions concerning quantum theory.[7]
^Ghirardi, G.C.; Rimini, A.; Weber, T. (March 1980). "A general argument against superluminal transmission through the quantum mechanical measurement process". Lettere al Nuovo Cimento. 27 (10): 293–298. doi:10.1007/BF02817189. S2CID121145494.