This article needs additional citations for verification. (January 2023) |
In mathematics, a quasiperiodic function is a function that has a certain similarity to a periodic function.[1] A function is quasiperiodic with quasiperiod if , where is a "simpler" function than . What it means to be "simpler" is vague.
A simple case (sometimes called arithmetic quasiperiodic) is if the function obeys the equation:
Another case (sometimes called geometric quasiperiodic) is if the function obeys the equation:
An example of this is the Jacobi theta function, where
shows that for fixed it has quasiperiod ; it also is periodic with period one. Another example is provided by the Weierstrass sigma function, which is quasiperiodic in two independent quasiperiods, the periods of the corresponding Weierstrass ℘ function. Bloch's theorem says that the eigenfunctions of a periodic Schrödinger equation (or other periodic linear equations) can be found in quasiperiodic form, and a related form of quasi-periodic solution for periodic linear differential equations is expressed by Floquet theory.
Functions with an additive functional equation
are also called quasiperiodic. An example of this is the Weierstrass zeta function, where
for a z-independent η when ω is a period of the corresponding Weierstrass ℘ function.
In the special case where we say f is periodic with period ω in the period lattice .