Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Real coordinate space

Cartesian coordinates identify points of the Euclidean plane with pairs of real numbers

In mathematics, the real coordinate space or real coordinate n-space, of dimension n, denoted Rn or , is the set of all ordered n-tuples of real numbers, that is the set of all sequences of n real numbers, also known as coordinate vectors. Special cases are called the real line R1, the real coordinate plane R2, and the real coordinate three-dimensional space R3. With component-wise addition and scalar multiplication, it is a real vector space.

The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the vector space. Similarly, the Cartesian coordinates of the points of a Euclidean space of dimension n, En (Euclidean line, E; Euclidean plane, E2; Euclidean three-dimensional space, E3) form a real coordinate space of dimension n.

These one to one correspondences between vectors, points and coordinate vectors explain the names of coordinate space and coordinate vector. It allows using geometric terms and methods for studying real coordinate spaces, and, conversely, to use methods of calculus in geometry. This approach of geometry was introduced by René Descartes in the 17th century. It is widely used, as it allows locating points in Euclidean spaces, and computing with them.


Previous Page Next Page






Espacio coordenado real Spanish 実数空間 Japanese

Responsive image

Responsive image