Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Relaxation (NMR)

In magnetic resonance imaging (MRI) and nuclear magnetic resonance spectroscopy (NMR), an observable nuclear spin polarization (magnetization) is created by a homogeneous magnetic field. This field makes the magnetic dipole moments of the sample precess at the resonance (Larmor) frequency of the nuclei. At thermal equilibrium, nuclear spins precess randomly about the direction of the applied field. They become abruptly phase coherent when they are hit by radiofrequency (RF) pulses at the resonant frequency, created orthogonal to the field. The RF pulses cause the population of spin-states to be perturbed from their thermal equilibrium value. The generated transverse magnetization can then induce a signal in an RF coil that can be detected and amplified by an RF receiver. The return of the longitudinal component of the magnetization to its equilibrium value is termed spin-lattice relaxation while the loss of phase-coherence of the spins is termed spin-spin relaxation, which is manifest as an observed free induction decay (FID).[1]

For spin-1/2 nuclei (such as 1H), the polarization due to spins oriented with the field N relative to the spins oriented against the field N+ is given by the Boltzmann distribution:

where ΔE is the energy level difference between the two populations of spins, k is the Boltzmann constant, and T is the sample temperature. At room temperature, the number of spins in the lower energy level, N−, slightly outnumbers the number in the upper level, N+. The energy gap between the spin-up and spin-down states in NMR is minute by atomic emission standards at magnetic fields conventionally used in MRI and NMR spectroscopy. Energy emission in NMR must be induced through a direct interaction of a nucleus with its external environment rather than by spontaneous emission. This interaction may be through the electrical or magnetic fields generated by other nuclei, electrons, or molecules. Spontaneous emission of energy is a radiative process involving the release of a photon and typified by phenomena such as fluorescence and phosphorescence. As stated by Abragam, the probability per unit time of the nuclear spin-1/2 transition from the + into the - state through spontaneous emission of a photon is a negligible phenomenon.[2][3] Rather, the return to equilibrium is a much slower thermal process induced by the fluctuating local magnetic fields due to molecular or electron (free radical) rotational motions that return the excess energy in the form of heat to the surroundings.

  1. ^ Rinck, Peter A. (2022). Relaxation Times and Basic Pulse Sequences in MR Imaging. in: Magnetic Resonance in Medicine. A Critical Introduction. 12th edition. pp. 65-92. Offprint to download: TRTF - The Round Table Foundation / EMRF - European Magnetic Resonance Forum. ISBN 978-3-7460-9518-9.
  2. ^ Abragam, A. (1961). "VII Thermal Relaxation in Liquids and Gases". Principles of Nuclear Magnetism. Oxford University Press. p. 264. ISBN 019852014X.
  3. ^ Hoult, D.I.; Bahkar, B. (1998). "NMR Signal Reception: Virtual Photons and Coherent Spontaneous Emission". Concepts in Magnetic Resonance. 9 (5): 277–297. doi:10.1002/(SICI)1099-0534(1997)9:5<277::AID-CMR1>3.0.CO;2-W.

Previous Page Next Page






Relaxation (NMR) German Relajación (resonancia magnética nuclear) Spanish 緩和 (NMR) Japanese Relaxação Portuguese 弛緩 (核磁共振) Chinese

Responsive image

Responsive image