Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Simplex

The four simplexes that can be fully represented in 3D space.
The four simplexes that can be fully represented in 3D space.

In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. For example,

Specifically, a k-simplex is a k-dimensional polytope that is the convex hull of its k + 1 vertices. More formally, suppose the k + 1 points are affinely independent, which means that the k vectors are linearly independent. Then, the simplex determined by them is the set of points

A regular simplex[1] is a simplex that is also a regular polytope. A regular k-simplex may be constructed from a regular (k − 1)-simplex by connecting a new vertex to all original vertices by the common edge length.

The standard simplex or probability simplex[2] is the (k − 1)-dimensional simplex whose vertices are the k standard unit vectors in , or in other words

In topology and combinatorics, it is common to "glue together" simplices to form a simplicial complex.

The geometric simplex and simplicial complex should not be confused with the abstract simplicial complex, in which a simplex is simply a finite set and the complex is a family of such sets that is closed under taking subsets.

  1. ^ Elte, E.L. (2006) [1912]. "IV. five dimensional semiregular polytope". The Semiregular Polytopes of the Hyperspaces. Simon & Schuster. ISBN 978-1-4181-7968-7.
  2. ^ Boyd & Vandenberghe 2004

Previous Page Next Page