Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Spin-1/2

A single point in space can spin continuously without becoming tangled. Notice that after a 360° rotation, the spiral flips between clockwise and counterclockwise orientations. It returns to its original configuration after spinning a full 720°.

In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2.[1][2][3] The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns (through 720°) before it has the same configuration as when it started.

Particles having net spin 1/2 include the proton, neutron, electron, neutrino, and quarks. The dynamics of spin-1/2 objects cannot be accurately described using classical physics; they are among the simplest systems which require quantum mechanics to describe them. As such, the study of the behavior of spin-1/2 systems forms a central part of quantum mechanics.

  1. ^ Resnick, R.; Eisberg, R. (1985). Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd ed.). John Wiley & Sons. ISBN 978-0-471-87373-0.
  2. ^ Atkins, P. W. (1974). Quanta: A Handbook of Concepts. Oxford University Press. ISBN 0-19-855493-1.
  3. ^ Peleg, Y.; Pnini, R.; Zaarur, E.; Hecht, E. (2010). Quantum Mechanics (2nd ed.). McGraw Hill. ISBN 978-0-071-62358-2.

Previous Page Next Page






لف ½ Arabic Spin-1/2 Catalan ਸਪਿੱਨ-½ PA Spin-½ Portuguese Spin ½ Turkish 自旋-1/2 Chinese

Responsive image

Responsive image