Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Standard molar entropy

In chemistry, the standard molar entropy is the entropy content of one mole of pure substance at a standard state of pressure and any temperature of interest. These are often (but not necessarily) chosen to be the standard temperature and pressure.

The standard molar entropy at pressure = is usually given the symbol , and has units of joules per mole per kelvin (J⋅mol−1⋅K−1). Unlike standard enthalpies of formation, the value of is absolute. That is, an element in its standard state has a definite, nonzero value of S at room temperature. The entropy of a pure crystalline structure can be 0 J⋅mol−1⋅K−1 only at 0 K, according to the third law of thermodynamics. However, this assumes that the material forms a 'perfect crystal' without any residual entropy. This can be due to crystallographic defects, dislocations, and/or incomplete rotational quenching within the solid, as originally pointed out by Linus Pauling.[1] These contributions to the entropy are always present, because crystals always grow at a finite rate and at temperature. However, the residual entropy is often quite negligible and can be accounted for when it occurs using statistical mechanics.

  1. ^ Pauling, Linus (1960). The Nature of the Chemical Bond (3rd ed.). Ithaca, NY: Cornell University Press.

Previous Page Next Page