Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Strain wave gearing

  • Outer circle: circular spline (fixed)
  • Middle circle: flex spline (attached to output shaft, not shown)
  • Inner oval: wave generator (attached to input shaft; inner ball bearing and shaft, not shown)
Harmonic Drive SE strain wave gear set consisting of wave generator bearing (top left), flexspline cup (top right) and circular spline ring (bottom).

Strain wave gearing (also known as harmonic gearing) is a type of mechanical gear system that uses a flexible spline with external teeth, which is deformed by a rotating elliptical plug to engage with the internal gear teeth of an outer spline.

The German company Harmonic Drive SE manufactured the first series-produced gears under the product name or registered trademark Harmonic Drive.

Strain wave gearing has some advantages over traditional gearing systems such as helical or planetary gears, including:

  • no backlash,
  • compactness and light weight,
  • high gear ratios,
  • reconfigurable ratios within a standard housing,
  • good resolution and excellent repeatability (linear representation) when repositioning inertial loads,[1]
  • high torque capability,
  • coaxial input and output shafts.[2]

High gear reduction ratios are possible in a small volume (a ratio from 30:1 up to 320:1 is possible in the same space in which planetary gears typically only produce a 10:1 ratio).

Disadvantages include a tendency for 'wind-up' (a torsional spring rate) in the low torque region.

Strain wave gearing is commonly used in robotics[3] and aerospace.[4] It can provide gear reduction but may also be used to increase rotational speed[citation needed], or for differential gearing.

  1. ^ Chironis, Nicholas; Sclater, Neil (2007). Mechanisms and Mechanical Devices Sourcebook. ISBN 978-0-07-146761-2.
  2. ^ Lauletta, Anthony (April 2006). "The Basics of Harmonic Drive Gearing" (PDF). Gear Product News. pp. 32–36. Archived from the original (PDF) on 2016-03-03.
  3. ^ Li, Z; Melek, WW; Clark, C (2009). "Decentralized robust control of robot manipulators with harmonic drive transmission and application to modular and reconfigurable serial arms". Robotica. 27 (2): 291–302. doi:10.1017/S0263574708004712.
  4. ^ Ueura, K; Kiyosawa, Y; Kurogi, J; Kanai, S; Miyaba, H; Maniwa, K; Suzuki, M; Obara, S (2008). "Tribological aspects of a strain wave gearing system with specific reference to its space application". Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 222 (8): 1051–1061. doi:10.1243/13506501JET415. ISSN 1350-6501. S2CID 108896120.

Previous Page Next Page