Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Terminal deoxynucleotidyl transferase

DNTT
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesDNTT, TDT, DNA nucleotidylexotransferase, Terminal deoxynucleotidyl transferase
External IDsOMIM: 187410; MGI: 98659; HomoloGene: 3014; GeneCards: DNTT; OMA:DNTT - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001017520
NM_004088

NM_001043228
NM_009345

RefSeq (protein)

NP_001017520
NP_004079

NP_001036693
NP_033371

Location (UCSC)Chr 10: 96.3 – 96.34 MbChr 19: 41.02 – 41.05 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Terminal deoxynucleotidyl transferase (TdT), also known as DNA nucleotidylexotransferase (DNTT) or terminal transferase, is a specialized DNA polymerase expressed in immature, pre-B, pre-T lymphoid cells, and acute lymphoblastic leukemia/lymphoma cells. TdT adds N-nucleotides to the V, D, and J exons of the TCR and BCR genes during antibody gene recombination, enabling the phenomenon of junctional diversity. In humans, terminal transferase is encoded by the DNTT gene.[5][6] As a member of the X family of DNA polymerase enzymes, it works in conjunction with polymerase λ and polymerase μ, both of which belong to the same X family of polymerase enzymes. The diversity introduced by TdT has played an important role in the evolution of the vertebrate immune system, significantly increasing the variety of antigen receptors that a cell is equipped with to fight pathogens. Studies using TdT knockout mice have found drastic reductions (10-fold) in T-cell receptor (TCR) diversity compared with that of normal, or wild-type, systems. The greater diversity of TCRs that an organism is equipped with leads to greater resistance to infection.[7][8] Although TdT was one of the first DNA polymerases identified in mammals in 1960,[9] it remains one of the least understood of all DNA polymerases.[7] In 2016–18, TdT was discovered to demonstrate in trans template dependant behaviour in addition to its more broadly known template independent behaviour[10][11]

TdT is absent in fetal liver HSCs, significantly impairing junctional diversity in B-cells during the fetal period.[12]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000107447Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000025014Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Isobe M, Huebner K, Erikson J, Peterson RC, Bollum FJ, Chang LM, et al. (September 1985). "Chromosome localization of the gene for human terminal deoxynucleotidyltransferase to region 10q23-q25". Proceedings of the National Academy of Sciences of the United States of America. 82 (17): 5836–40. Bibcode:1985PNAS...82.5836I. doi:10.1073/pnas.82.17.5836. PMC 390648. PMID 3862101.
  6. ^ Yang-Feng TL, Landau NR, Baltimore D, Francke U (1986). "The terminal deoxynucleotidyltransferase gene is located on human chromosome 10 (10q23----q24) and on mouse chromosome 19". Cytogenetics and Cell Genetics. 43 (3–4): 121–6. doi:10.1159/000132309. PMID 3467897.
  7. ^ a b Motea EA, Berdis AJ (May 2010). "Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1804 (5): 1151–66. doi:10.1016/j.bbapap.2009.06.030. PMC 2846215. PMID 19596089.
  8. ^ Haeryfar SM, Hickman HD, Irvine KR, Tscharke DC, Bennink JR, Yewdell JW (July 2008). "Terminal deoxynucleotidyl transferase establishes and broadens antiviral CD8+ T cell immunodominance hierarchies". Journal of Immunology. 181 (1): 649–59. doi:10.4049/jimmunol.181.1.649. PMC 2587314. PMID 18566432.
  9. ^ Bollum FJ (August 1960). "Calf thymus polymerase". The Journal of Biological Chemistry. 235 (8): 2399–403. doi:10.1016/S0021-9258(18)64634-4. PMID 13802334.
  10. ^ Gouge J, Rosario S, Romain F, Poitevin F, Béguin P, Delarue M (April 2015). "Structural basis for a novel mechanism of DNA bridging and alignment in eukaryotic DSB DNA repair". The EMBO Journal. 34 (8): 1126–42. doi:10.15252/embj.201489643. PMC 4406656. PMID 25762590.
  11. ^ Loc'h J, Delarue M (December 2018). "Terminal deoxynucleotidyltransferase: the story of an untemplated DNA polymerase capable of DNA bridging and templated synthesis across strands" (PDF). Current Opinion in Structural Biology. 53: 22–31. doi:10.1016/j.sbi.2018.03.019. PMID 29656238. S2CID 4882661.
  12. ^ Hardy R (2008). "Chapter 7: B Lymphocyte Development and Biology". In Paul W (ed.). Fundamental Immunology (Book) (6th ed.). Philadelphia: Lippincott Williams & Wilkins. pp. 237–269. ISBN 978-0-7817-6519-0.

Previous Page Next Page