Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Tropical year

A tropical year or solar year (or tropical period) is the time that the Sun takes to return to the same position in the sky – as viewed from the Earth or another celestial body of the Solar System – thus completing a full cycle of astronomical seasons. For example, it is the time from vernal equinox to the next vernal equinox, or from summer solstice to the next summer solstice. It is the type of year used by tropical solar calendars.

The tropical year is one type of astronomical year and particular orbital period. Another type is the sidereal year (or sidereal orbital period), which is the time it takes Earth to complete one full orbit around the Sun as measured with respect to the fixed stars, resulting in a duration of 20 minutes longer than the tropical year, because of the precession of the equinoxes.

Since antiquity, astronomers have progressively refined the definition of the tropical year. The entry for "year, tropical" in the Astronomical Almanac Online Glossary states:[1]

the period of time for the ecliptic longitude of the Sun to increase 360 degrees. Since the Sun's ecliptic longitude is measured with respect to the equinox, the tropical year comprises a complete cycle of seasons, and its length is approximated in the long term by the civil (Gregorian) calendar. The mean tropical year is approximately 365 days, 5 hours, 48 minutes, 45 seconds.

An equivalent, more descriptive, definition is "The natural basis for computing passing tropical years is the mean longitude of the Sun reckoned from the precessionally moving equinox (the dynamical equinox or equinox of date). Whenever the longitude reaches a multiple of 360 degrees the mean Sun crosses the vernal equinox and a new tropical year begins".[2]

The mean tropical year in 2000 was 365.24219 ephemeris days, each ephemeris day lasting 86,400 SI seconds.[3] This is 365.24217 mean solar days.[4] For this reason, the calendar year is an approximation of the solar year: the Gregorian calendar (with its rules for catch-up leap days) is designed so as to resynchronise the calendar year with the solar year at regular intervals.

  1. ^ Cite error: The named reference AAOG2020 was invoked but never defined (see the help page).
  2. ^ Borkowski 1991, p. 122.
  3. ^ Cite error: The named reference SIsecond was invoked but never defined (see the help page).
  4. ^ Cite error: The named reference Richards2013_587 was invoked but never defined (see the help page).

Previous Page Next Page