Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Virus-like particle

Virus-like particles (VLPs) are molecules that closely resemble viruses, but are non-infectious because they contain no viral genetic material. They can be naturally occurring or synthesized through the individual expression of viral structural proteins, which can then self assemble into the virus-like structure.[1][2][3][4] Combinations of structural capsid proteins from different viruses can be used to create recombinant VLPs. Both in-vivo assembly (i.e., assembly inside E. coli bacteria via recombinant co-expression of multiple proteins) and in-vitro assembly (i.e., protein self-assembly in a reaction vessel using stoichiometric quantities of previously purified proteins) have been successfully shown to form virus-like particles. VLPs derived from the Hepatitis B virus (HBV) and composed of the small HBV derived surface antigen (HBsAg) were described in 1968 from patient sera.[5] VLPs have been produced from components of a wide variety of virus families including Parvoviridae (e.g. adeno-associated virus), Retroviridae (e.g. HIV), Flaviviridae (e.g. Hepatitis C virus), Paramyxoviridae (e.g. Nipah) and bacteriophages (e.g. Qβ, AP205).[1] VLPs can be produced in multiple cell culture systems including bacteria, mammalian cell lines, insect cell lines, yeast and plant cells.[6][7]

VLPs can also refer to structures produced by some LTR retrotransposons (under Ortervirales) in nature. These are defective, immature virions, sometimes containing genetic material, that are generally non-infective due to the lack of a functional viral envelope.[8][9] In addition, wasps produce polydnavirus vectors with pathogenic genes (but not core viral genes) or gene-less VLPs to help control their host.[10][11]

  1. ^ a b Zeltins A (January 2013). "Construction and characterization of virus-like particles: a review". Molecular Biotechnology. 53 (1): 92–107. doi:10.1007/s12033-012-9598-4. PMC 7090963. PMID 23001867.
  2. ^ Buonaguro L, Tagliamonte M, Tornesello ML, Buonaguro FM (November 2011). "Developments in virus-like particle-based vaccines for infectious diseases and cancer". Expert Review of Vaccines. 10 (11): 1569–83. doi:10.1586/erv.11.135. PMID 22043956. S2CID 25513040.
  3. ^ "NCI Dictionary of Cancer Terms". National Cancer Institute. 2011-02-02. Retrieved 2019-04-19.
  4. ^ Mohsen MO, Gomes AC, Vogel M, Bachmann MF (July 2018). "Interaction of Viral Capsid-Derived Virus-Like Particles (VLPs) with the Innate Immune System". Vaccines. 6 (3): 37. doi:10.3390/vaccines6030037. PMC 6161069. PMID 30004398.
  5. ^ Bayer ME, Blumberg BS, Werner B (June 1968). "Particles associated with Australia antigen in the sera of patients with leukaemia, Down's Syndrome and hepatitis". Nature. 218 (5146): 1057–9. Bibcode:1968Natur.218.1057B. doi:10.1038/2181057a0. PMID 4231935. S2CID 39890704.
  6. ^ Santi L, Huang Z, Mason H (September 2006). "Virus-like particles production in green plants". Methods. 40 (1): 66–76. doi:10.1016/j.ymeth.2006.05.020. PMC 2677071. PMID 16997715.
  7. ^ Huang X, Wang X, Zhang J, Xia N, Zhao Q (2017-02-09). "Escherichia coli-derived virus-like particles in vaccine development". npj Vaccines. 2 (1): 3. doi:10.1038/s41541-017-0006-8. PMC 5627247. PMID 29263864.
  8. ^ Beliakova-Bethell N, Beckham C, Giddings TH, Winey M, Parker R, Sandmeyer S (January 2006). "Virus-like particles of the Ty3 retrotransposon assemble in association with P-body components". RNA. 12 (1): 94–101. doi:10.1261/rna.2264806. PMC 1370889. PMID 16373495.
  9. ^ Purzycka KJ, Legiewicz M, Matsuda E, Eizentstat LD, Lusvarghi S, Saha A, et al. (January 2013). "Exploring Ty1 retrotransposon RNA structure within virus-like particles". Nucleic Acids Research. 41 (1): 463–73. doi:10.1093/nar/gks983. PMC 3592414. PMID 23093595.
  10. ^ Burke, Gaelen R.; Strand, Michael R. (2012-01-31). "Polydnaviruses of Parasitic Wasps: Domestication of Viruses To Act as Gene Delivery Vectors". Insects. 3 (1): 91–119. doi:10.3390/insects3010091. PMC 4553618. PMID 26467950.
  11. ^ Leobold, Matthieu; Bézier, Annie; Pichon, Apolline; Herniou, Elisabeth A; Volkoff, Anne-Nathalie; Drezen, Jean-Michel; Abergel, Chantal (July 2018). "The Domestication of a Large DNA Virus by the Wasp Venturia canescens Involves Targeted Genome Reduction through Pseudogenization". Genome Biology and Evolution. 10 (7): 1745–1764. doi:10.1093/gbe/evy127. PMC 6054256. PMID 29931159.

Previous Page Next Page