Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Water activity

In food science, water activity (aw) of a food is the ratio of its vapor pressure to the vapor pressure of water at the same temperature, both taken at equilibrium.[1] Pure water has a water activity of one. Put another way, aw is the equilibrium relative humidity (ERH) expressed as a fraction instead of as a percentage. As temperature increases, aw typically increases, except in some products with crystalline salt or sugar.

Water migrates from areas of high aw to areas of low aw. For example, if honey (aw ≈ 0.6) is exposed to humid air (aw ≈ 0.7), the honey absorbs water from the air. If salami (aw ≈ 0.87) is exposed to dry air (aw ≈ 0.5), the salami dries out, which could preserve it or spoil it. Lower aw substances tend to support fewer microorganisms since these get desiccated by the water migration.

Water activity is not simply a function of water concentration in food. The water in food has a tendency to evaporate, but the water vapor in the surrounding air has a tendency to condense into the food. When the two tendencies are in balance— and the air and food are stable—the air's relative humidity (expressed as a fraction instead of as a percentage) is taken to be the water activity, aw. Thus, water activity is the thermodynamic activity of water as solvent and the relative humidity of the surrounding air at equilibrium.

  1. ^ "Water Activity in Foods". FDA (United States Food and Drug Administration). Retrieved 3 January 2025.

Previous Page Next Page