Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Weak solution

In mathematics, a weak solution (also called a generalized solution) to an ordinary or partial differential equation is a function for which the derivatives may not all exist but which is nonetheless deemed to satisfy the equation in some precisely defined sense. There are many different definitions of weak solution, appropriate for different classes of equations. One of the most important is based on the notion of distributions.

Avoiding the language of distributions, one starts with a differential equation and rewrites it in such a way that no derivatives of the solution of the equation show up (the new form is called the weak formulation, and the solutions to it are called weak solutions). Somewhat surprisingly, a differential equation may have solutions that are not differentiable, and the weak formulation allows one to find such solutions.

Weak solutions are important because many differential equations encountered in modelling real-world phenomena do not admit of sufficiently smooth solutions, and the only way of solving such equations is using the weak formulation. Even in situations where an equation does have differentiable solutions, it is often convenient to first prove the existence of weak solutions and only later show that those solutions are in fact smooth enough.


Previous Page Next Page






Schwache Lösung German Αδύναμη λύση Greek Solución débil Spanish جواب ضعیف FA 弱解 Japanese 약해 (수학) Korean 弱解 Chinese

Responsive image

Responsive image