Regreso estas unu el aro da statistikaj metodoj tre uzataj por analizi rilaton de dependa variablo al unu aŭ pluraj aliaj nedependaj variabloj. Pli specife, regreso helpas komprenigi, kiel tipa valoro de dependa variablo ŝanĝas, kiam unu el la nedependaj variabloj varias, dum la aliaj nedependaj variabloj restas senŝanĝaj.
Regresanalizo estas vaste uzata por prognozo kaj antaŭvido, kiam la laborkampo proksimiĝas al artefarita intelekto.
Granda aro da teĥnikoj por trakti analizojn estis realigitaj. Konataj metodoj, kiel la lineara regreso kaj la metodo de kvadrataj minimumoj, estas parametraj regresoj, ĉar ilia regresofunkcio, kiu bildigas la problemon, estas difinita per finia nombro da nekonataj parametroj, kiuj estas laŭtaksataj el la datenoj. Neparametraj regresoj estas malpli konataj, kaj rilatas al teĥnikoj, kiuj permesas regresojn ligitajn al specifa aro da funkcioj, kun okazeble nefiniaj dimensioj.