En geometrio, solido de Johnson estas severe konveksa pluredro, ĉiu edro de kiu estas regula plurlatero kaj kiu ne estas platona solido, arĥimeda solido, prismo, aŭ kontraŭprismo. Ne nepras ke ĉiu edro estas la sama plurlatero, aŭ ke la samaj plurlateroj kuniĝas ĉirkaŭ ĉiu vertico. Simpla ekzemplo de solido de Johnson estas la kvarangula piramido kun kvadrato kiel bazo kaj egallatera trianguloj kiel flankoj (J1), Ĝi havas unu kvadratan edron kaj kvar triangulajn edrojn.
Severe konveksa pluredro estas konveksa pluredro ĉe kiu ĉiuj duedraj anguloj estas malpli ol 180 gradoj.
Kiel en ĉiu severe konveksa solido, almenaŭ tri edroj devas kunigi je ĉiu vertico, kaj la sumo de iliaj anguloj devas esti malpli ol 360 gradoj. Pro tio ke regula plurlatero havas anguloj de almenaŭ 60 gradoj, do maksimume kvin edroj kuniĝas je iu ajn vertico. La kvinlatera piramido (J2) estas ekzemplo kiu reale havas ordo-5 verticon.
Kvankam ĉi tio ne estas evidenta limigo, ĉiu edro de Solido de Johnson havas 3, 4, 5, 6, 8, aŭ 10 laterojn.
En 1966, Norman Johnson publikigis liston kiu inkluzivis ĉiujn 92 pluredrojn, kaj donis al ili nomojn kaj numerojn. Li ne pruvis ke ĉi tio estas la tuta aro, sed li faris ĉi tiun konjekton. Victor Zalgaller en 1969 pruvis ĉi tiun konjekton, do la listo de Johnson estas plena.
Inter solidoj de Johnson, la plilongigita kvadrata turnodukupolo (J37) estas unika en estado loke vertico-uniforma: estas kvar edroj je ĉiu vertico, kaj ilia ordigo estas ĉiam la sama: tri kvadratoj kaj unu triangulo. Kvankam ĝi ne estas malloke vertico-uniforma, la pluredro estas malsama se rigardi pli malproksimen de iuj malsamaj verticoj