Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Spaca angulo

Spaca angulo, ofte priskribita per simbolo Ω, estas tridimensia angulo kun vertico en centro de sfero, kiu priskribas kiel grandan areon oni eltranĉas de la surfaco de sfero. Ĝia unuo estas steradiano (sr) kiu formale estas sen unua dimensio (m2·m−2 → 1). Plena spaca angulo egalas al . Spaca angulo je 1 sr (unu steradiano) signifas ke oni eltranĉas areon egala al kvadrato kun latero radiuslonga. Ĝi estas ankaŭ mezuro de tio kiel granda objekto aspektas al rigardanto en certa distanco. Malgranda objekto apude povas havi la saman spacan angulon kiel granda objekto malproksime.

spaca angulo je unu steradiano

La spaca angulo estas proporcia kun la surfaca areo S, de projekcio de tiu objekto sur sferon centritan je tiu punkto de rigardanto, dividita per la kvadrato de la sfera radiuso R, Ω = k S/R2, kie k estas la proporcieca konstanto. Solida angulo estas rilatanta al surfaco de la sfero en la sama vojo kiel ordinara angulo estas rilatanta al perimetro de cirklo.

Se la proporcieca konstanto estas elektita egala al 1, la mezurunuo de solida angulo estas la SI-a steradiano (mallonge sr). Tial la solida angulo de la tuta sfero mezurita de ĝia centro estas 4π sr, kaj la solida angulo el centro de kubo al unu el ĝiaj ses edroj estas unu-sesa de tiu la tuta kaj estas 2π/3 sr. Solida angulo povas esti mezurita ankaŭ (por k = (180/π)2) en kvadrataj gradoj aŭ (por k = 1/4π) en frakcioj de la sfero (kio estas, frakcia areo).

Por ricevi la solidan angulon en steradianoj, necesas multipliki la frakcian areon per .
Pro ricevi la solidan angulon en kvadrataj gradoj, necesas multipliki la frakcian areon per 4π × (180/π)2, kio egalas al 129600/π.

La spaca angulo por surfaco S al punkto P estas donita per la surfaca integralo:

kie estas la vektora pozicio de infinitezima areo de surfaco kun respekto al punkto P kaj kie estas vektoro direkte al la unuo normala al kun grandeco de


Previous Page Next Page