Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Subaro

A estas subaro de B, kaj B estas superaro de A.

En matematiko, aparte en aroteorio, aro A estas subaro de aro B, se A estas "enhavata" ene de B. La interrilato de unu aro estante subaro de alia estas nomata kiel inkluziveco. Ĉiu aro estas subaro de si.

Pli formale, Se A kaj B estas aroj kaj ĉiu ero de A estas ankaŭ ero de B, tiam:

  • A estas subaro de (aŭ estas inkluzivita en) B, skribata per AB,

aŭ ekvivalente

  • B estas superaro de (aŭ inkluziva) A, skribata per BA.

Se A estas subaro de B, sed A estas ne egala al B, tiam A estas ankaŭ strikta (aŭ pozitiva) subaro de B. Ĉi tio estas skribita kiel AB. En la sama vojo, BA signifas ke B estas strikta superaro de A.

Simboloj ⊆ kaj ⊂ estas analoga al ≤ kaj <. Ekzemple, se A estas (larĝsenca) subaro de B (skribita kiel AB), tiam la kvanto da eroj en A estas malpli ol aŭ egala al la kvanto da eroj en B (skribita kiel |A| ≤ |B|). Ankaŭ, por finiaj aroj A kaj B, se AB tiam |A| < |B|.

Por ĉiu aro S, inkluziveco estas rilato sur la aro de ĉiuj subaroj de S.


Previous Page Next Page