Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Diagrama de Coxeter-Dynkin

Diagramas de Coxeter-Dynkin para los grupos fundamentales finitos de Coxeter
Diagramas de Coxeter-Dynkin para los grupos afines fundamentales de Coxeter

En geometría, un diagrama de Coxeter-Dynkin (también diagrama de Coxeter o gráfico de Coxeter) es un grafo con enlaces etiquetados s (o hiperplanos reflectores). Describe una construcaleidoscópica: ca dominio de una faceta) y la etiqueta ligada a una rama codifica el orden del ángulo diedro entre cada dos espejos (en un dominio de una cara), es decir, la cantidad por la que se tiene que multiplicar el ángulo entre los planos reflectantes para obtener 180 grados. Una rama sin etiquetar representa implícitamente el orden 3 (60 grados).

Cada diagrama representa un grupo de Coxeter, que se clasifican por sus diagramas asociados.

Los diagramas de Dynkin son objetos estrechamente relacionados, que difieren de los diagramas de Coxeter en dos aspectos: en primer lugar, las ramas etiquetadas como "4" o mayores están dirigidas, mientras que los diagramas de Coxeter son no dirigidos; en segundo lugar, los diagramas de Dynkin deben satisfacer una restricción adicional (la restricción cristalográfica), a saber, que las únicas etiquetas de rama permitidas son 2, 3, 4 y 6. Los diagramas de Dynkin guardan una correspondencia directa con los sistemas raíz, por lo que se usan para clasificarlos. Esto implica a su vez que forman álgebras de Lie semisimples.[1]

  1. Hall, Brian C. (2003), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Springer, ISBN 978-0-387-40122-5 .

Previous Page Next Page