Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Faktorizazio

Matematikan, faktorizazio deritzo adierazpen matematiko bat (zenbakiak, polinomioak, matrizeak...) biderkadura gisa deskonposatzeko teknikari. Hainbat faktorizazio-metodo daude. Helburua da adierazpena sinplifikatzea edo oinarrizko bloketan (faktoretan) berridaztea, adibidez, zenbaki bat zenbaki lehenetan (15 zenbakia 3x5 da) edo polinomio bat polinomio laburtezinetan (x2 − 4 polinomioa (x − 2)(x + 2) da) berridaztea.

Zenbakien faktorizazioaren aurkakoa da horien biderketa eta, polinomio baten faktorizazioarena, aldiz, hedapena. Polinomioa faktorizatutakoan sortzen diren faktoreak biderkatuz, polinomio bakar bat lortzen da, terminoen gehiketa dena. Adibidez, 4x 2 termino bat da.

Zenbaki osoak faktorizatzeko, aritmetikaren oinarrizko teorema erabiltzen da eta, polinomioen faktorizaziorako, aljebraren oinarrizko teorema. Matrizeak ere faktoriza daitezke matrize berezi batzuen biderkadura gisa. Matrize-faktorizazioaren ohiko adibideek matrize ortogonalak, unitarioak eta triangularrak erabiltzen dituzte. Hainbat mota daude: QR deskonposizioa, LQ, QL, RQ edo RZ.


Previous Page Next Page