Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Integrointi moniulotteisessa avaruudessa

Kaksinkertaista integraalia voidaan käyttää kolmiulotteisen kappaleen tilavuuden määrittämiseen. Kuvan esimerkissä pinnan alle jäävä tilavuus saadaan integroimalla funktio suorakaiteen muotoisen pohjan pinta-alan yli.

Integrointi moniulotteisessa avaruudessa tarkoittaa kahden tai useamman muuttujan reaaliarvoisten funktioiden määrätyn integraalin selvittämistä. Moniulotteisen avaruuden määrättyjä integraaleja kutsutaan moninkertaisiksi integraaleiksi, ja niiden määrittäminen perustuu yhden muuttujan määrättyjen integraalien määrittämiseen toistuvasti.[1]

Kaksiulotteisen avaruuden osajoukoissa määriteltyjen funktioiden integraaleja kutsutaan kaksinkertaisiksi integraaleiksi[1] ja kolmiulotteisen avaruuden osajoukoissa määriteltyjen funktioiden integraaleja vastaavasti kolminkertaisiksi integraaleiksi.[2] Yksinkertaisin moniulotteisessa avaruudessa integroinnin sovellus on kolmiulotteisen alueen tilavuuden määrittäminen kaksinkertaisen integraalin avulla.[1]

  1. a b c Adams, Robert A. & Essex, Christopher: Calculus: A Complete Course, 8. painos, s. 807−811. Pearson, 2014. ISBN 978-0-321-78107-9 (englanniksi)
  2. Adams & Essex, s. 835

Previous Page Next Page