Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Kapasitanssi

2200 μF avattu kondensaattori, jossa näkyvät kaksi metallilevyä ja niiden välissä oleva eriste.

Kapasitanssi C on sähköstatiikkaan liittyvä suure, joka kertoo systeemiin varastoituneen sähkövarauksen Q suhteen systeemin kahden osan väliseen sähköiseen potentiaalieroon U, eli C on Q/U. Kapasitanssi voidaan määrittää mille tahansa systeemille, jonka osat voidaan varata sähköllä, mutta käytännössä se on lähinnä sähköä varastoiviin kondensaattoreihin liittyvä suure ja tarkasteltava systeemi on yleensä siksi kondensaattori.[1] Kapasitanssin käänteisarvo 1/C on elastanssi.

SI-järjestelmässä kapasitanssin yksikkö on faradi (symboli F), joka on yksi coulombi volttia kohti (C/V tai CV-1), ja arvoltaan aina positiivinen. Koska faradi on suhteellisen suuri yksikkö, siksi käytetään kondensaattoreiden merkinnöissä sen pienempiä kerrannaisyksiköitä: mikrofaradia (μF) ja nanofaradia (nF), jotka ovat faradin miljoonas- (10-6) ja miljardisosa (10-9).[2]

Ideaalin kondensaattorin kapasitanssi C voidaan määritellä yhtälöillä

tai

joissa Q on positiivisen +Q ja negatiivisen -Q elektrodin sähkövarauksien itseisarvojen summa (esim. |0| + |-9| = 9) ja U tai ΔV sähköinen potentiaaliero eli jännite elektrodien välillä.[2]

Kapasitanssi C voidaan ajatella myös kondensaattorin latausvirran i ja jännitteen muutosnopeuden dU/dt suhteena[3]

Kondensaattoriin varastoitu energia, eli työ W (joule, j) jonka se voi tehdä on

jossa C on kapasitanssi, U jännite-ero ja Q varaus.[1]

Jos kondensaattorissa jännite on niin suuri, että se ylittää eristeen läpilyöntikestävyyden, tämä aiheuttaa läpilyönnin ja voi rikkoa kondensaattorin.[1] Muuten kondensaattorin jännitteestä tulee lähes yhtä suuri kuin sitä lataavan pariston jännitteestä: 9 V paristolla kondensaattori saa jännitteen ~9 V. Tässä tapauksessa elektrodien jännitteiksi voidaan merkitä 0 V ja 9 V tai vaikka -3 ja 6 V, kunhan jännite-ero on 9 V, sillä voltti on vertailukohdasta riippuva yksikkö.[4]

  1. a b c Knight, Randall Dewey,: Physics for scientists and engineers : a strategic approach : with modern physics, s. 849–859. Boston: Pearson Education, Inc.. OCLC: 756279784 ISBN 9780321740908
  2. a b Serway, Raymond A.: Physics for scientists and engineers, s. 740-762. Belmont, CA: Brooks/Cole, Cengage Learning, 2010. OCLC: 500920961 ISBN 9781439048443
  3. Young, Hugh D.: Sears and Zemansky's university physics : with modern physics. s. 909. San Francisco: Pearson Addison Wesley, 2004. OCLC: 52455280 ISBN 0321204697
  4. Electrical curriculum: What is Voltage? amasci.com. Arkistoitu ”Volts are always measured along the flux lines of electric field, therefore voltage is always measured between two charged objects. If I start at the negative end of my flashlight battery, I can call that end "zero volts", and so the other end must be positive 1.5 volts. However, if I start at the POSITIVE end instead, then instead the positive battery terminal is zero volts, and the other terminal is negative 1.5 volts. Or, if I start half way between the battery terminals, then one terminal is -.75 volts, and the other terminal is +.75 volts. OK, what is the REAL voltage of the positive battery terminal? Is it actually zero, or actually +1.5, or is it +.75 volts? Nobody can say.” Viitattu 31.1.2018.

Previous Page Next Page