Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Espace nul

En algèbre linéaire, l'espace nul sur un corps commutatif K est le singleton {0}, muni de son unique structure de K-espace vectoriel. Les lois d'addition et de multiplication par un scalaire sont données comme suit :

 ;
.

Il est parfois noté K0. Son unique élément est appelé le vecteur nul.

L'espace nul comporte une unique base, qui ne contient aucun vecteur : c'est la famille indexée par l'ensemble vide, autrement dit la famille ( ). La dimension de {0} est donc 0.

L'espace nul admet une unique injection linéaire dans un K-espace vectoriel donné : l'application nulle. En d'autres termes, l'espace nul est l'objet initial de la catégorie des K-espaces vectoriels.

Inversement, tout K-espace vectoriel se surjecte linéairement sur l'espace nul, la surjection étant unique : c'est l'application nulle. En d'autres termes, l'espace nul est l'objet final de la catégorie des K-espaces vectoriels.

Les matrices représentant les applications nulles sont les matrices vides.


Previous Page Next Page






Nullvektorraum German Zero vector space English Triviaaliavaruus Finnish Nullvektortér Hungarian 零ベクトル空間 Japanese Нулевое векторное пространство Russian

Responsive image

Responsive image