Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Formule de Clausius-Clapeyron

En chimie physique, et plus particulièrement en thermodynamique, la formule de Clausius-Clapeyron (ou relation de Clausius-Clapeyron, équation de Clausius-Clapeyron) est une forme simplifiée de la formule de Clapeyron permettant son intégration dans le cas d'un équilibre liquide-vapeur d'un corps pur. Elle porte le nom d'Émile Clapeyron qui établit la formule générale et la formule simplifiée en 1834[1] et de Rudolf Clausius qui les retrouva en 1850[2].

Contrairement à la formule de Clapeyron qui est valable quelles que soient les conditions de pression et température, c'est-à-dire du point triple au point critique dans le diagramme de phase du corps pur, cette relation simplifiée n'est valable que :

  1. si le volume molaire du liquide est négligeable devant celui du gaz, c'est-à-dire pour un équilibre loin du point critique ;
  2. si le gaz se comporte comme un gaz parfait, c'est-à-dire pour un équilibre aux basses pressions.

Par intégration, selon la forme donnée à l'entropie de vaporisation et l'enthalpie de vaporisation (qui ne dépendent que de la température), elle permet d'obtenir diverses formules de la pression de vapeur saturante d'un corps pur en fonction de la température : entre autres la formule de Duperray (entropie de vaporisation constante), les formule de Rankine et équation d'Antoine (enthalpie de vaporisation constante) ou la formule de Dupré (enthalpie de vaporisation variant linéairement avec la température).

  1. É. Clapeyron, « Mémoire sur la puissance motrice de la chaleur », Journal de l'École polytechnique, vol. 23,‎ , p. 153-191 (lire en ligne), p. 173.
  2. (de) R. Clausius, « Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen » [« On the motive power of heat and the laws which can be deduced therefrom regarding the theory of heat »], Annalen der Physik, vol. 155, no 4,‎ , p. 500–524 (DOI 10.1002/andp.18501550403, Bibcode 1850AnP...155..500C, lire en ligne), p. 505.

Previous Page Next Page