Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Image d'une application

est une fonction de dans . L'ovale jaune dans est l'image de .

On appelle image d'une application f (d'un ensemble A vers un ensemble B) l'image directe par f de l'ensemble de départ A[1]. C'est donc le sous-ensemble de B contenant les images de tous les éléments de A, et uniquement ces images. On le note Im(f).

.


Exemple : « L'image de la fonction sinus est le segment [–1, 1][1]. »[Note 1]

Une application est surjective si et seulement si son image coïncide avec son ensemble d'arrivée.

Une application est dite injective si tout élément de son ensemble d'arrivée a au plus un antécédent par f.

Une application est dite bijective si elle est à la fois surjective et injective, ce qui signifie que chaque élément de l'ensemble d'arrivée a un antécédent et que celui-ci est unique.

On peut aussi parler d'image réciproque d'une fonction qui est définie par:

  1. a et b François Liret, Maths en pratique : À l'usage des étudiants, Dunod, , 600 p. (ISBN 978-2100496297, lire en ligne), p. 13


Erreur de référence : Des balises <ref> existent pour un groupe nommé « Note », mais aucune balise <references group="Note"/> correspondante n’a été trouvée


Previous Page Next Page