Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Nombre complexe

Représentation graphique du complexe x + i y = r eiφ à l'aide d'un vecteur. Mise en évidence de l'interprétation graphique de son module r et d'un de ses arguments φ.

En mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i[a],[b] tel que i2 = −1. Le carré de (−i) est aussi égal à −1 : (−i)2 = −1. Tout nombre complexe peut s'écrire sous la forme x + i yx et y sont des nombres réels.

Les nombres complexes ont été progressivement introduits au XVIe siècle par l’école mathématique italienne (Jérôme Cardan, Raphaël Bombelli, Tartaglia) afin d'exprimer les solutions des équations du troisième degré en toute généralité par les formules de Cardan, en utilisant notamment des « nombres » de carré négatif.

On peut munir l'ensemble des nombres complexes d'une addition et d'une multiplication qui en font un corps commutatif contenant le corps des nombres réels. Il est appelé corps des nombres complexes et se note . La notion de valeur absolue définie sur l'ensemble des nombres réels peut être étendue à l'ensemble des nombres complexes et prend alors le nom de module. Mais on ne peut pas munir l'ensemble des nombres complexes d'une relation d'ordre qui en ferait un corps totalement ordonné, c'est-à-dire qu'il n'est pas possible de comparer deux complexes en respectant les règles opératoires valables pour les nombres réels.

Ce n'est qu'à partir du XIXe siècle, sous l'impulsion de l'abbé Buée et de Jean-Robert Argand (plan d'Argand), puis avec les travaux de Gauss et de Cauchy, que se développe l'aspect géométrique des nombres complexes. On les associe à des vecteurs ou des points du plan. Les transformations du plan s'expriment alors sous forme de transformations complexes.

En algèbre, le théorème fondamental de l’algèbre énonce qu'un polynôme complexe non constant possède toujours au moins une racine complexe. Le corps des nombres complexes est dit algébriquement clos. On peut ainsi identifier le degré d'un polynôme complexe non nul au nombre de ses racines comptées avec leur ordre de multiplicité.

En analyse, l'exponentielle complexe permet de simplifier l'étude des séries de Fourier, puis de définir la transformée de Fourier. La branche de l'analyse complexe concerne l'étude des fonctions dérivables au sens complexe, appelées fonctions holomorphes.

En physique, les nombres complexes sont utilisés pour décrire le comportement d'oscillateurs électriques ou les phénomènes ondulatoires en électromagnétisme[b]. Ils sont aussi essentiels dans la formulation mathématique de la mécanique quantique.
Erreur de référence : Des balises <ref> existent pour un groupe nommé « alpha », mais aucune balise <references group="alpha"/> correspondante n’a été trouvée


Previous Page Next Page