En arithmétique, un nombre premier long est un nombre premier p tel que dans une base donnée b non divisible par p, l'entier soit cyclique.
Une manière équivalente de définir que p est un nombre premier long dans la base b est de dire que le groupe (ℤ/pℤ)× admet b comme générateur[1].
Sauf mention explicite, la base b considérée est la base dix.