Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Moment inercije

Klasična mehanika

drugi Newtonov zakon
povijest klasične mehanike
kronologija klasične mehanike
Klizačica kod okretanja smanjuje svoj moment tromosti ili moment inercije skupljajući ruke uz tijelo kako bi se brže okretala.
Traktor s vanjskim zamašnjakom (s velikim momentom tromosti) koji služi da ujednačuje okretanje motora (bez trzaja).
Kod hodanja po užetu koristi se moment inercije dugog štapa kako bi se povećala ravnoteža.

Moment tromosti ili moment inercije (znak I ili J) je fizikalna veličina koja opisuje tromost ili inerciju čestice ili krutoga tijela pri promjeni brzine ili smjera vrtnje; jednaka je zbroju umnožaka mase m i kvadrata udaljenosti r od osi rotacije svake čestice koja čini tijelo:

Moment inercije je ustvari mjera tromosti za vrtnju ili rotacijsko gibanje. Može se reći da je moment inercije rotacijska analogija mase. Što je moment inercije nekog tijela veći to ga je teže pokrenuti u rotaciju ili zaustaviti njegovu rotaciju. Međutim, za razliku od mase, moment inercije nije neka nepromjenjiva veličina; on ovisi o osi oko koje se dešava rotacija tijela. Matematička definicija momenta inercije I materijalne točke mase m za neku os a je:

gdje je r udaljenost te točke od osi rotacije. Mjerna jedinica za moment inercije je kg.

Za neko tijelo sastavljeno od N materijalnih čestica moment inercije za neku os je jednak zbroju momenata inercije svih materijalnih čestica za tu istu os:

Ovo je nepraktičan izraz za neko kontinuirano tijelo za koji bi trebalo znati točan broj i položaj svih čestica. Umjesto toga integriraju se momenti inercije svih diferencijalnih masa dm:

Uz pretpostavku da je gustoća tijela ρ po cijelom volumenu jednaka, dobivamo:

Momenti inercije za osi koje prolaze kroz težište tijela nazivaju se vlastitim momentima inercije. Iako gornja matematička formulacija vrijedi posve općenito, moment inercije za neku os koja prolazi izvan težišta tijela se može izračunati pomoću Steinerovog pravila koje možemo ovako sročiti:

Moment inercije tijela za neku os koja ne prolazi težištem jednak je zbroju vlastitog momenta inercije za os paralelnu s traženom osi i umnoška mase tijela s kvadratom udaljenosti težišta tijela od tražene osi .

Ovo je pravilo vrlo važno i elementarno. Umnožak mase tijela i kvadrata udaljenosti težišta tijela od tražene osi se naziva položajni moment inercije.

Matematički izričaj Steinerovog pravila možemo zapisati na sljedeći način:

Iz svega izloženoga treba uočiti nekoliko činjenica bitnih za razumijevanje materije:

  • Što je neka masa udaljenija od osi rotacije, to je teže vršiti rotaciju.
  • Inertnost ili tromost mase pri rotaciji raste s kvadratom udaljenosti od osi rotacije.
  • Materijalna točka nema vlastitih momenata inercije jer nema protežnost.
  • Za dovoljno kompaktna tijela (na primjer mala kugla) u nekim slučajevima možemo aproksimirati da nemaju vlastitih momenata inercije.
  • Moment inercije nekog tijela ne ovisi samo o negovoj masi i udaljenosti njegovog težišta od osi rotacije, već i o obliku.
  • Steinerovo pravilo se primjenjuje bez obzira na to da li os rotacije prolazi kroz tijelo ili se nalazi izvan njega, bitan je samo odnos osi prema težištu.

Previous Page Next Page