Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Aljabar asosiatif

Dalam matematika, aljabar asosiatif adalah struktur aljabar dengan operasi penjumlahan, perkalian yang kompatibel (diasumsikan sebagai asosiatif), dan perkalian skalar dengan elemen bidang. Operasi penjumlahan dan perkalian A dengan struktur gelanggang; operasi penjumlahan dan perkalian skalar bersama-sama memberikan A struktur dari ruang vektor di atas K. Dalam artikel ini kita juga akan menggunakan istilah aljabar-K untuk berarti aljabar asosiatif di atas bidang K. Contoh standar pertama dari aljabar-K adalah gelanggang matriks kuadrat di atas bidang K, dengan perkalian matriks biasa.

Aljabar komutatif adalah aljabar asosiatif yang menggunakan perkalian komutatif atau ekuivalen, aljabar asosiatif yang juga merupakan gelanggang komutatif.

Dalam artikel ini, aljabar asosiatif menggunakan identitas perkalian, dilambangkan dengan 1; kadang-kadang disebut aljabar asosiatif unital untuk klarifikasi. Dalam beberapa bidang matematika asumsi tidak dibuat, dan struktur aljabar non-unital dari aljabar asosiatif. Gelanggang adalah unital dari semua homomorfisme gelanggang.

Banyak penulis mempertimbangkan konsep umum dari aljabar asosiatif di atas gelanggang komutatif R, dari bidang: aljabar-R adalah modul-R dengan operasi asosiatif bilinear-R, juga menggunakan identitas perkalian. Untuk contoh konsep ini, jika S adalah gelanggang dengan pemusat C, maka S adalah aljabar asosiatif C.


Previous Page Next Page