Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Geometri

Ilustrasi teorema Desargues, hasil penting dalam Euclidean dan geometri proyektif
Tersseract atau Hiperkubus Salah satu bentuk geometri 4 Dimensi

Geometri adalah cabang matematika yang bersangkutan dengan pertanyaan bentuk. Seorang ahli matematika yang bekerja di bidang geometri disebut ahli geometri. Geometri muncul secara independen di sejumlah budaya awal sebagai ilmu pengetahuan praktis tentang panjang, luas, dan volume, dengan unsur-unsur dari ilmu matematika formal yang muncul di Barat sedini Thales (abad 6 SM). Pada abad ke-3 SM geometri dimasukkan ke dalam bentuk aksiomatik oleh Euclid, yang dibantu oleh geometri Euclid, menjadi standar selama berabad-abad. Archimedes mengembangkan teknik cerdik untuk menghitung luas dan isi, dalam banyak cara mengantisipasi kalkulus integral yang modern. Bidang astronomi, terutama memetakan posisi bintang dan planet pada falak dan menggambarkan hubungan antara gerakan benda langit, menjabat sebagai sumber penting masalah geometrik selama satu berikutnya dan setengah milenium. Kedua geometri dan astronomi dianggap di dunia klasik untuk menjadi bagian dari Quadrivium tersebut, subset dari tujuh seni liberal dianggap penting untuk warga negara bebas untuk menguasai.

Pengenalan koordinat oleh René Descartes dan perkembangan bersamaan aljabar menandai tahap baru untuk geometri, karena tokoh geometris, seperti kurva pesawat, sekarang bisa diwakili analitis, yakni dengan fungsi dan persamaan. Hal ini memainkan peran penting dalam munculnya kalkulus pada abad ke-17. Selanjutnya, teori perspektif menunjukkan bahwa ada lebih banyak geometri dari sekadar sifat metrik angka: perspektif adalah asal geometri proyektif. Subyek geometri selanjutnya diperkaya oleh studi struktur intrinsik benda geometris yang berasal dengan Euler dan Gauss dan menyebabkan penciptaan topologi dan geometri diferensial.

Dalam waktu Euclid tidak ada perbedaan yang jelas antara ruang fisik dan ruang geometris. Sejak penemuan abad ke-19 geometri non-Euclid, konsep ruang telah mengalami transformasi radikal, dan muncul pertanyaan: mana ruang geometris paling sesuai dengan ruang fisik? Dengan meningkatnya matematika formal dalam abad ke-20, juga 'ruang' (dan 'titik', 'garis', 'bidang') kehilangan isi intuitif, jadi hari ini kita harus membedakan antara ruang fisik, ruang geometris (di mana ' ruang ',' titik 'dll masih memiliki arti intuitif mereka) dan ruang abstrak. Geometri kontemporer menganggap manifold, ruang yang jauh lebih abstrak dari ruang Euclid yang kita kenal, yang mereka hanya sekitar menyerupai pada skala kecil. Ruang ini mungkin diberkahi dengan struktur tambahan, yang memungkinkan seseorang untuk berbicara tentang panjang. Geometri modern memiliki ikatan yang kuat dengan beberapa fisika, dicontohkan oleh hubungan antara geometri pseudo-Riemann dan relativitas umum. Salah satu teori fisika termuda, teori string, juga sangat geometris dalam rasa.

Sedangkan sifat visual geometri awalnya membuatnya lebih mudah diakses daripada bagian lain dari matematika, seperti aljabar atau teori bilangan, bahasa geometrik juga digunakan dalam konteks yang jauh dari tradisional, asal Euclidean nya (misalnya, dalam geometri fraktal dan geometri aljabar).


Previous Page Next Page






Meetkunde AF Geometrie ALS ጂዎሜትሪ AM Cheometría AN ज्यामिति ANP هندسة رياضية Arabic تسطار ARY জ্যামিতি AS Xeometría AST Həndəsə AZ

Responsive image

Responsive image